Hrxn = Q reaction / mol of reaction
mol of reaction = M * V = 10 * 1 = 10 mmol = 0.01 mol
Q water = m * C * (Tf - Ti)
= (10 + 10) (4.184) (26-20) = 502.08 J
Q reaction = - Q water = -502.08 J
Hrxn = -502.08 / (0.01) = - 50208 J = - 50.21 kJ/mol
Answer:
A. In a graduated cylinder, put some quantity of water and measure the initial volume. Then put a coin and measure the volume. To find the volume of the coin, simply subtract the initial volume (water only) from the ending volume (water + coin). To measure the mass, take a dry coin and place it on an electronic scale. Density = mass / volume, so divide the mass by the volume to calculate the density of the coin.
B. When measuring the volume, make sure to look at the graduated cylinder at eye level and read from the bottom of the meniscus.
Answer: The molar mass of the gas is 31.6 g/mol
Explanation:
According to ideal gas equation:
P = pressure of gas = 3.0 atm
V = Volume of gas = 25.0 L
n = number of moles = ?
R = gas constant =
T =temperature =
Moles =


The molar mass of the gas is 31.6 g/mol
Answer:
The new temperature of the water bath 32.0°C.
Explanation:
Mass of water in water bath ,m= 8.10 kg = 8100 g ( 1kg = 1000g)
Initial temperature of the water = 
Final temperature of the water = 
Specific heat capacity of water under these conditions = c = 4.18 J/gK
Amount of energy lost by water = -Q = -69.0 kJ = -69.0 × 1000 J
( 1kJ=1000 J)




The new temperature of the water bath 32.0°C.
When gases get cooler the molecules slow down or lose energy and condense so the volume in the tire or soccer ball would decrease and may feel flatter