1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
3 years ago
12

A bicyclist steadily speeds up from rest to 9.00m/s during a 7.20s time interval. Determine all unknowns and answer the followin

g questions. What is the magnitude of the bicyclist's acceleration? unit How far did the bicyclist travel during this time? unit​
Physics
1 answer:
sergiy2304 [10]3 years ago
4 0

Answer:

First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured with a stopwatch, is a great simplification. Since elapsed time is

Δ

t

=

t

f

−

t

0

, taking

t

0

=

0

 means that

Δ

t

=

t

f

, the final time on the stopwatch. When initial time is taken to be zero, we use the subscript 0 to denote initial values of position and velocity. That is,

x

0

is the initial position and

v

0

is the initial velocity. We put no subscripts on the final values. That is,

t

is the final time,

x

is the final position, and

v

is the final velocity. This gives a simpler expression for elapsed time—now,

Δ

t

=

t

. It also simplifies the expression for displacement, which is now

Δ

x

=

x

−

x

0

. Also, it simplifies the expression for change in velocity, which is now

Δ

v

=

v

−

v

0

. To summarize, using the simplified notation, with the initial time taken to be zero,

Δ

t

=

t

Δ

x

=

x

−

x

0

Δ

v

=

v

−

v

0

 

}

Explanation:

You might be interested in
A converging lens has a focal length of 20 cm. An object 1 cm tall is placed 10 cm from the center of the lens. What is the heig
SCORPION-xisa [38]

Answer: 2 cm

Explanation:

Given , for a converging lens

Focal length : f=20\ cm

Height of object : h=1\ cm

Object distabce from lens : u=-10\ cm

Using lens formula: \dfrac{1}{f}=\dfrac{1}{v}-\dfrac{1}{u}, we get

\dfrac{1}{20}=\dfrac{1}{v}+\dfrac{1}{10}, where v = image distance from the lens.

On solving aboive equation , we get

\dfrac{1}{v}=\dfrac{1}{20}-\dfrac{1}{10}=\dfrac{1-2}{20}=\dfrac{-1}{20}\Rightarrow\ v=-20\ cm

Formula of Magnification : m=\dfrac{v}{u}=\dfrac{h'}{h} , where h' is the height of image.

Put value of u, v and h in it , we get

\dfrac{-20}{-10}=\dfrac{h'}{1}\\\\\Rightarrow\ h'=2\ cm

Hence, the height of the image is 2 cm.

3 0
3 years ago
A diver 40 m deep in 10 degrees C fresh water exhales a 1.5 cm diameter bubble.
zzz [600]

Answer:

0.0257259766982 m

Explanation:

P_2 = Atmospheric pressure = 101325 Pa

d_1 = Initial diameter = 1.5 cm

d_2 = Final diameter

\rho = Density of water = 1000 kg/m³

h = Depth = 40 m

The pressure is

P_1=P_2+\rho gh\\\Rightarrow P_1=101325+1000\times 9.81\times 40\\\Rightarrow P_1=493725\ Pa

From ideal gas law we have

\dfrac{P_1V_1}{T_1}=\dfrac{P_2V_2}{T_2}\\\Rightarrow \dfrac{P_1\dfrac{4}{3\times8}\pi d_1^3}{T_1}=\dfrac{P_2\dfrac{4}{3\times8}\pi d_2^3}{T_2}\\\Rightarrow \dfrac{P_1d_1^3}{T_1}=\dfrac{P_2d_2^3}{T_2}\\\Rightarrow d_2=(\dfrac{P_1d_1^3T_2}{P_2T_1})^{\dfrac{1}{3}}\\\Rightarrow d_2=(\dfrac{493725\times 0.015^3\times (20+273.15)}{101325\times (10+273.15)})^{\dfrac{1}{3}}\\\Rightarrow d_2=0.0257259766982\ m

The diameter of the bubble is 0.0257259766982 m

8 0
3 years ago
What is the speed of a truck that travels 10 i’m in 10 minutes ?
fiasKO [112]

10km/10min is a legitimate speed. So is meters/sec, km/hour (kph), etc.  

Kph is very common for vehicles:  

10 km/10 min (60 min/hr) = 60 kph

7 0
4 years ago
While entering a freeway, a car accelerates from rest at a rate of 2.40 m/s2 for 12.0 s. (a) Draw a sketch of the situation. (b)
ArbitrLikvidat [17]

Answer:

a) See attached picture, b) We know the initial velocity = 0, initial position=0, time=12.0s, acceleration=2.40m/s^{2}, c) the car travels 172.8m in those 12 seconds, d) The car's final velocity is 28.8m/s

Explanation:

a) In order to draw a sketch of the situation, I must include the data I know, the data I would like to know and a drawing of the car including the direction of the movement and its acceleration, just like in the attached picture.

b) From the information given by the problem I know:

initial velocity =0

acceleration = 2.40m/s^{2}

time = 12.0 s

initial position = 0

c)

unknown:

displacement.

in order to choose the appropriate equation, I must take the knowns and the unknown and look for a formula I can use to solve for the unknown. I know the initial velocity, initial position, time, acceleration and I want to find out the displacement. The formula that contains all this data is the following:

x=x_{0}+V_{x0}t+\frac{1}{2}a_{x}t^{2}

Once I got the equation I need to find the displacement, I can plug the known values in, like this:

x=0+0(12s)+\frac{1}{2}(2.40\frac{m}{s^{2}} )(12s)^{2}

after cancelling the pertinent units, I get that  my answer will be given in meters. So I get:

x=\frac{1}{2} (2.40\frac{m}{s^{2}} )(12s)^{2}

which solves to:

x=172.8m

So the displacement of the car in 12 seconds is 172.8m, which makes sense taking into account that it will be accelerating for 12 seconds and each second its velocity will increase by 2.4m/s.

d) So, like the previous part of the problem, I know the initial position of the car, the time it travels, the initial velocity and its acceleration. Now I also know what its final position is, so we have more than enough information to find this answer out.

I need to find the final velocity, so I need to use an equation that will use some or all of the known data and the unknown. In order to solve this problem, I can use the following equation:

a=\frac{V_{f}-V_{0} }{t}

Next, since I need to find the final velocity, I can solve the equation just for that, I can start by multiplying both sides by t so I get:

at=V_{f}-V_{0}

and finally I can add V_{0} to both sides so I get:

V_{f}=at+V_{0}

and now I can proceed and substitute the known values:

V_{f}=at+V_{0}

V_{f}=(2.40\frac{m}{s^{2}}} (12s)+0

which solves to:

V_{f}=28.8m/s

8 0
3 years ago
Read 2 more answers
A sound wave has a frequency of 192Hz and travels the length of a football field, 91.4m in 0.267s.  What is the period?
Vinvika [58]

Answer:1/192 seconds

Explanation:

Period=1÷frequency

Period=1÷192

Period=1/192 seconds

6 0
4 years ago
Other questions:
  • When two atoms share electrons the bond is ______
    5·2 answers
  • Which of the following correctly describes the formula for speed?
    11·2 answers
  • Astrology is considered a science because it is grounded in scientific research.<br>  
    5·2 answers
  • Convection currents produce the heat in the Earth’s interior.
    12·2 answers
  • Has anyone read the book Third level
    9·2 answers
  • **URGENT, I WILL PAY 30 POINTS, PLEASE HELP**
    14·2 answers
  • A student is sitting in a moving car. Through the car's window, the student sees a traffic
    9·1 answer
  • The diagram below represents a flashlight that has been turned on. Which form of energy is being converted to electrical energy
    12·1 answer
  • A hot-air balloon plus cargo has a mass of 308 kg and a volume of 2910 m3 on a day when the outside air density is 1.22 kg/m3. T
    8·1 answer
  • 3. [-/2 Points]
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!