Explanation:
uuubbv. very ecrcvtyfyhc g you f gg and you are the one to give me the chance for a little bit of time and effort into this is 6.0 and if
Use the equation for the acceleration
A = final velocity - initial velocity divided by time final - time initial
A= 54 - 32 / 8 - 0
A= 22 / 8
A= 2.75 m/s^2
Hope this helps!
Answer:
1960 J
Explanation:
EK = (18 kg + 62 kg)
/2 = 1960 J
Answer:
(a). 2.8 minutes.
(b). 0.4732
Explanation:
Without mincing words, let's dive straight into the solution to the question.
So, for the part (a), the expected arrival time can be calculated as given below.
The distribution falls between the ranges of 0(lower boundary) to 5.5minutes(upper boundary).
Therefore, the expected time = (0 + 5.5)÷ 2 = 2.75 minutes = 2.8 minutes(to 2 decimal places).
(b). The probability that an elevator arrives in less than 2.6 minutes can be calculated as given below;
Recall: We have that the upper boundary = 0 and the lower boundary = 5.5 minutes for the distribution. Also, the upper limit is equal to 2.6 minutes and the lower limits = 0 minutes.
Therefore, 1/ (5.5 - 0) = 1/5.5 = 0.182.
Therefore, the probability that an elevator arrives in less than 2.6 minutes = 0.182 ( 2.6 - 0).
The probability that an elevator arrives in less than 2.6 minutes = ( 0.182 × 2.6).
The probability that an elevator arrives in less than 2.6 minutes = 0.4732.