I would say the answer is liquids
The number of hours required : 37.2 hours
<h3>Further explanation</h3>
Given
⁴²K (potassium -42)
Required
The number of hours
Solution
The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.
Usually, radioactive elements have an unstable atomic nucleus.
Based on Table N(attached), the half-life for ⁴²K is 12.4 hours, which means half of a sample of ⁴²K will decay in 12.4 hours
For three half-life periods :

Answer:
This means that the isotope of silicon with a mass number of 28 is by far the most common of these three isotopes.
Explanation:
The abundance of Si-28 is 92.23%. Si-29 is 4.68% and Si-30 is 3.09%.
Because most Si atoms have a mass of 28 amu, the average mass of all silicon atoms is very close to 28.
Here is a video which summarizes how to calculate average atomic mass from data about mass and relative abundance.
In order to become a scientific theory the three
categories that it must pass are the following:
1) Can the phenomena be recreated in a laboratory setting?
2) Can variables be changed, yet still result in like observations?
3) Is the phenomena truly natural or was it the result of a man-made force
enacting upon it?
Answer:
We need 10.14 grams of sodium bromide to make a 0.730 M solution
Explanation:
Step 1: Data given
Molarity of the sodium bromide (NaBr) = 0.730 M
Volume of the sodium bromide solution = 135 mL = 0.135 L
Molar mass sodium bromide (NaBr) = 102.89 g/mol
Step 2: Calculate moles NaBr
Moles NaBr = Molarity NaBr * volume NaBr
Moles NaBr = 0.730 M * 0.135 L
Moles NaBr = 0.09855 moles
Step 3: Calculate mass of NaBr
Mass NaBr = 0.09855 moles * 102.89 g/mol
Mass NaBr = 10.14 grams
We need 10.14 grams of sodium bromide to make a 0.730 M solution