<span>You have to use a Newman projection to make sure that the H on C#2 is anti-coplanar with the Br on C#1. (Those are the two things that are going to be eliminated to make the alkene.)
My Newman projection looks like this when it's in the right configuration:
Front carbon (C#2) has ethyl group straight up, H down/left, and CH3 down/right
Back carbon (C#1) has H straight down, Ph up/left, and Br up/right.
Then when you eliminate the H from C#2 and the Br from C#1, you will have Ph and the ethyl group on the same side of the molecule, and you'll have the remaining H and CH3 on the same side of the molecule.
This is going to give you (Z)-2-methyl-1-phenyl-1-butene.</span>
The statement that describes a chain reaction brought about by a nuclear reaction is "neutrons <span>released during a fission reaction cause other nuclei to split." This is applicable to fission reactions only wherein atoms split and produce neutrons that also cause further atoms to split, thus creating a chain or series of reactions.</span>
I believe that the chemical formula for an acid often begins with H, which means C is your answer.
Explanation:
Strength of intermolecular forces depends on the number of carbon atoms present in a compound. More is the number of carbon atoms attached linearly to each other more will be the surface area occupied by it. Hence, more is the strength of the compound.
This means that more is the branching present in a compound or lesser is the number of carbon atoms present in it then less will be the strength of intermolecular forces in the compound.
Thus, we can conclude that given compounds are placed in order of decreasing strength of intermolecular forces as follows.
>
>