Number of photons can be calculated by dividing the needed energy by the energy per photon.
The minimum energy needed is given as 2 x 10^-17 joules
Energy per photon = hc / lambda where h is planck's constant, c is the speed of light and lambda is the wavelength
Energy per photon = (<span>6.626 x 10^-34 x 3 x 10^8) / (475 x 10^-9)
= 4.18 x 10^-19 J
number of photons = (2 x 10^-17) / (4.18 x 10^-19)
= 47.79 photons which is approximately 48 photons</span>
Unsaturated hydrocarbons are those in which each carbon atom is attached to as many hydrogen atoms as it possibly can. There can be no double bonds or non-hydrogen functional groups, since these detract from the maximum possible number of hydrogens that each carbon can be attached to (in the case of double bonds, two carbons are bonded to each other when they could alternately be bonded to one more hydrogen each).
All of the alkanes (including the cycloalkanes) are saturated hydrocarbons. Substituted alkanes, alkenes, alkynes, and their cyclic counterparts are all unsaturated.
Using ideal gas equation, PV = nRT, and since there is no volume change and amount change, the equation is now P = kT, where k =nR/V. Temperature must be in kelvin
From the given, k = (0.82)/ (21 + 273) = 2.78 x 10^-3
Substituting T = -3.5+273, P = 0.75 atm
From the stoichiometry of the reaction, 1.4 * 10^-3 g is produced.
<h3>What mass of water is produced?</h3>
The equation of the reaction is written as; CO2 + 2LiOH → Li2CO3 + H2O. This can help us to apply the principle of stoichiometry here.
Thus;
Number of moles of CO2 = 0.00345 g/44 g/mol = 7.8 * 10^-5 moles
If 1 mole of CO2 produced 1 mole of water
7.8 * 10^-5 moles of CO2 produced 7.8 * 10^-5 moles of water
Mass of water produced = 7.8 * 10^-5 moles * 18 g/mol = 1.4 * 10^-3 g
Learn ore about stoichiometry:brainly.com/question/9743981
#SPJ1
Answer:
2.25 M <========= I do not see this in your selection of answers !
Explanation:
Mole weight of Li F
( from periodic table ) = 6.94 + 18.998 = 25.938 gm/mole
56 gm / ( 25.938 gm /mole) = 2.15899 moles
2.15899 mole / (.959) L = 2.25 M