Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
The answer will be (4) HI because the greater the difference of the bonds in electronegativity, the more polar a bond is.
Answer:
The minimum number of boxes of pencils to be ordered is 630 boxes.
Explanation:
Since a pupil uses averagely 9.3 pencils
and a box contains 12 pencils,
the school enrollment is also 812
school's enrollment x average use of pencil per student
__________________________________________
number of pencils in a box
812 x 9.3 = 7551.6
7551.6 /12 = 629.3
Having a total number of 630 boxes of pencils to be ordered.