Answer:
Here's what I get
Explanation:
(a) Intermediates
The three structures below represent one contributor to the resonance-stabilized intermediate, in which the lone pair electrons on the heteroatom are participating (the + charge on the heteroatoms do not show up very well).
(b) Relative Stabilities
The relative stabilities decrease in the order shown.
N is more basic than O, so NH₂ is the best electron donating group (EDG) and will best stabilize the positive charge in the ring. However, the lone pair electrons on the N in acetanilide are also involved in resonance with the carbonyl group, so they are not as available for stabilization of the ring.
(c) Relative reactivities
The relative reactivities would be
C₆H₅-NH₂ > C₆H₅-OCH₃ > C₆H₅-NHCOCH₃
Answer:
The answer to your question is: V2 = 1.94 l
Explanation:
Data
V1 = 2.42 l
T1 = 25°C
P1 = 1 atm
V2 = ?
T2 = 25 -11 = 14°C
P2 = 1(0.7) = 0.7 atm
Formula
P1V1/T1 = P2V2/T2
Clear V2 from the equation
V2 = P1V1T2/ P2T1
V2 = (1)((2.42)(14) / (0.7)(25)
V2 = 33.88 / 17.5
V2 = 1.94 l
Answer: Each pair of shared electrons is a covalent bond which can be represented by a dash.
Explanation:
In a Lewis dot structure, the central atom can share electrons through bonds with the surrounding atoms, and this can look like a dash between the atoms.
Answer= C) CN contains a covalent bond.
The molarity of a solution is a type of expression of concentration equal to the number of moles solute per liter solution. In this problem, we are given the molarity equal to 0.75 M and a volume equal to 500 milliliters. <span>500 milliliters is equal to 0.5 liters. we multiply M and L to get the number of moles then multiply by the molar mass of NaCl. The answer is 21.92 grams.</span>