Notice how the K and Ag are both being swapped around.
Single Replacement:
A+BX → B+AX
Double Replacement:
AX+BY → BX + AY
Answer:
4.17e+22 atoms of tin are present in the cube
Explanation:
We don't require the size of the cube. With the mass and the molar mass of tin = 118.7 amu we can find moles of Tin. As 1 mol = 6.022x10²³ atoms we can find the number of atoms:
<em>Moles Tin:</em>
8.21g * (1mol / 118.7g) = 0.0692 moles Tin
<em>Atoms Tin:</em>
0.0692 moles Tin * (6.022x10²³ atoms / mol) =
<h3>4.17e+22 atoms of tin are present in the cube</h3>
Answer:
186 Liters at STP conditions
Explanation:
1 mole of any gas at STP conditions occupies 22.4 Liters.
Therefore, 8.32 moles O₂(g) = 8.32 moles x 22.4Liters/mole = 186 Liters (3 sig.figs.)
The number of atoms of K that are in 235 g of the compound is
2.57 x10^24 atoms
calculation
Step 1: find the moles of K2S
= moles = mass/molar mass
= 235 g/110 g/mol= 2.136 moles
Step 2: multiply 2.136 moles by no. of K atoms in K2S
= 2.136 x2 = 4.272 moles
Step 3: use the Avogadro's law to determine number of K atoms
that is according to Avogadro's law 1 mole = 6.02 x 10^23 atoms
4.272 moles= ? atoms
by cross multiplication
= (4.272 moles x 6.02 x10^23 atoms) / 1 mole = 2.57 x10^24 atoms