Answer:
Which language is this???
Answer:
Explanation:
Given parameters:
pH = 3.50
Unknown:
concentration of [H₃0⁺] = ?
concentration of [OH⁻] = ?
Solution:
In order to find the unknown, we use some simple expressions which best explains the pH scale and the equilibrium systems of aqueous solutions.
pH = -log₁₀[H₃O⁺]
[H₃O⁺] = inverse log₁₀ (-pH) =
= 
[H₃O⁺] = 3.2 x 10⁻⁴moldm⁻³
For the [OH⁻]:
we use : pOH = -log₁₀ [OH⁻]
Recall: pOH + pH = 14
pOH = 14 - pH = 14 - 3.5 = 10.5
Now we plug the value of pOH into pOH = -log₁₀ [OH⁻]
[OH⁻] = 
[OH⁻] =
= 3.2 x 10⁻¹¹moldm⁻³
The solution is acidic as the concentration of H₃0⁺ is more than that of the OH⁻ ions.
The equation : y=3x-5
<h3>Further explanation
</h3>
Straight-line equations are mathematical equations that are described in the plane of cartesian coordinates
General formula
y-y1 = m(x-x1)
or
y = mx + c
Where
m = straight-line gradient which is the slope of the line
x1, y1 = the Cartesian coordinate that is crossed by the line
c = constant
The formula for a gradient (m) between 2 points in a line
m = Δy / Δx


Answer:
25kJ
Explanation:
Given the initial energy to be 30kJ
The energy change from the initial energy to the peak energy = (65-30) kJ
= 35kJ
since the second energy change was a drop in energy it is regarded negative
= (55-65)
= -10kJ
Therefore total energy change
= (35-10)kJ
= 25kJ
Answer:
Project 3.
Explanation:
Project 3's anticipated cost is 12 to 17 million dollars. It is a <em>lower </em>anticipated cost than Project 2 and Project 4, but <em>higher</em> than Project 1 by one million dollars at maximum cost anticipation. Additionally, the percentage of wildlife to benefit is 70-80%, which is <em>second</em> to the most wildlife to benefit which is Project 4 at 75-80%.
And finally, for community support for Project 3 - the chart lists it as high. This outclasses Project 2 and Project 4, but balances with Project 1. However, Project 1 costs 13 to 16 million dollars and <em>only</em> benefits 15-25% of wildlife.