Answer:
The answer to the question is
A tilted bed is said to have a _dip____, describing the angle that the bed forms with the horizontal plane--and a strike, the compass direction that lies at right angles to the tilted bed.
Explanation:
The dip of a tilted bed, describes the acute angle a tilted bed makes with the horizontal plane, by stating the numerical value of the angle from 0 to 90 degrees as well as pointing out the orientation of the downward dipping direction in the orientation towards N, S, E, W
The strike line represents the line formed to represent the intersection of a feature of a bed such as the bed rock surface with a horizontal plane.
The dip and the strike line of a tilted bed are always at right angles to each other on a geologic map.
There are
two things that you should remember while dealing with the "Lever Mechanical Advantage" problems:
1) The Effort Arm;
2) The Resistance Arm.
Some books label the Effort Arm as in-lever arm and the Resistance Arm as out-lever arm. (Physics Jargon that you need to remember in order to solve problems)
The Effort Arm is that "part" of the lever where the force can be applied. The Resistance Arm is where some mass is placed. In the diagram, as you can see, the mass is placed on one arm of the lever. Therefore, it is the Resistance Arm.
Now the formula for the "Mechanical Advantage(MA)" is:

Where

is the length of the Effort Arm(the subscript "e" stands for Effort), and

stands for the length of the Resistance Arm(here "r" stands for Resistance).
Plug in the values:

= 15m.

= 7m.
Therefore,

/

= 15/7 =
2.143 = MAThe correct answer is
option C(2.14).
-i
I believe the correct answer is true. Mechanical waves use matter to transfer energy. It <span> is a </span>wave<span> that is an oscillation of matter, and therefore transfers energy through a medium. Hope this answers the question. Have a nice day.</span>
Answer:
- <u>The water ballon that was thrown straight down at 2.00 m/s hits the ground first, 0.19 s before the other ballon.</u>
Explanation:
The motions of the two water ballons are ruled by the kinematic equations:
We are only interested in the vertical motion, so that equation is all what you need.
<u>1. Water ballon is thrown horizontally at sped 2.00 m/s.</u>
The time the ballon takes to hit the ground is independent of the horizontal speed.
Since 2.00 m/s is a horizontal speed, you take the initial vertical speed equal to 0.
Then:

<u>2. Water ballon thrown straight down at 2.00 m/s</u>
Now the initial vertical speed is 2.00 m/s down. So, the equation is:

To solve the equation you can use the quadratic formula.

You get two times. One of the times is negative, thus it does not have physical meaning.
<u>3. Conclusion:</u>
The water ballon that was thrown straight down at 2.00 m/s hits the ground first by 1.11 s - 0.92s = 0.19 s.
Answer:
I would use a propeller like the first or second just from my experience. Just play around with the different ones and see which one works best for you.Don't make the propeller too thick or thin or else it may not work.
Explanation:
Have a great day! Good luck!