1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxTIMURxx [149]
3 years ago
15

How does Density depend on the type of object being measured ?

Physics
1 answer:
max2010maxim [7]3 years ago
5 0

Answer:

ways to exaplined

Explanation:

Density is calculated by

dividing the mass by the volume, so that density is measured as units of mass/volume, often g/mL. If both water samples are at the same temperature, their densities should be identical, regardless of the samples' volume.

You might be interested in
A charge Q is distributed uniformly on a non-conducting ring of radius R and mass M. The ring is dropped from rest from a height
mihalych1998 [28]

Answer:

Check below for the explanation

Explanation:

Since it is stated that the ring is dropped from a height, h, through a non uniform magnetic field, two kinds of force will act on the ring, namely:

  • A magnetic force (that is non uniform since the field is  non uniform)
  • Gravitational force

A certain amount of torque is provided by the non uniform magnetic force on the ring while the force gravity pulls it down. Due to the downward pull by the force of gravity on the ring and the torque acting on it as a result of the non uniform magnetic force, the ring begins to rotate.

5 0
3 years ago
(An easy problem which will be graded). Later in the quarter we will spend some time solving the diffusion equation Op(r, t) = D
alexandr402 [8]

Answer:

Explanation:

Answer is in the attachment below:

7 0
3 years ago
As a bullet shot vertically upward rises, the kinetic energy of the bullet
algol [13]

The kenitc energy of the bullet lowers as it keeps going up.

Because gravity is pushing the bullet down as the bullet goes up.

I'm pretty sure that the way to put this answer.

3 0
2 years ago
The acceleration due to gravity on the moon is about 1/6 of the acceleration due to gravity on the earth. A net force F acts hor
uysha [10]

Answer:

c.a_m

Explanation:

We are given that

Acceleration due to gravity on the moon=a_m

Acceleration due to gravity on the earth=a_e

g_m=\frac{1}{6}g_e

Net force due to am on an object on moon=F_{net}=ma_m

There is no friction and no drag force and there is no gravity involved

Then, the force acting on an object on earth=F=ma_e

F=F_{net}(given)

ma_m=ma_e

a_e=a_m

Hence, option c is true.

3 0
2 years ago
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
Other questions:
  • Use the following terms in the same sentence: proton, neutron, and isotope.
    6·1 answer
  • Does all mass take up space
    14·1 answer
  • What value of x is in the solution set of 2(3x – 1) ≥ 4x – 6?
    14·1 answer
  • A conductor directly connected to the earth is called a ______.
    11·1 answer
  • A conservative force acts on a particle. We can conclude:
    15·1 answer
  • What is tiny holes on the surface of a plant?
    15·1 answer
  • When does radioactivity decay occur?
    8·1 answer
  • If the force applied to an object is
    15·1 answer
  • you (60 kg) are standing in a (500 kg) elevator that is moving upwards from a ground floor on a building what is the power ratin
    5·1 answer
  • An 80 kg skier stands at the top of a 40-meter slope. She then skis down the slope. What is her approximate speed at the bottom
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!