Answer:
Ribosomes are found 'free' in the cytoplasm or bound to the endoplasmic reticulum (ER) to form rough ER.
Just multiply the "1.0 m/s" by ' 1 ' a few times. (Remember that a fraction with the same quantity on top and bottom is equal to ' 1 ' .)
(1.0 m/sec) · (1 km/1000 m) · (60 sec/min) · (60 min/hr) =
(1.0 · 60 · 60 / 1,000) (m · km · sec · min / sec · m · min · hr) =
(3,600 / 1,000) (km / hr) =
3.6 km/hr .
To solve this problem it is only necessary to apply the kinematic equations of angular motion description, for this purpose we know by definition that,

Where,
Angular Displacement
Angular Acceleration
Angular velocity
Initial angular displacement
For this case we have neither angular velocity nor initial angular displacement, then

Re-arrange for 

Replacing our values,


Therefore the ANgular acceleration of the mass is 
Answer:
20cm
Explanation:
A convex lens has a positive focal length and the object placed in front of it produce both virtual and real image <em>(image distance can be negative or positive depending on the nature of the image</em>).
According to the lens equation
where;
f is the focal length of the lens
u is the object distance
v is the image distance
If the magnification is - 0.6
mag = v/u = -0.5
v = -0.5u
since v = 10cm
10 = -0.5u
u = -10/0.5
u =-20 cm
Substitute u = -20cm ( due to negative magnification)and v = 10cm into the lens formula to get the focal length f

Hence the focal length of the convex lens is 20cm

Sokka is here to help!!
The answer is...
<h2>D. Counter-arguments lead to circular logic in your argument.</h2>
Because, I am right. :)
Hopefully, this helps you!!
