Answer:
The mean birth weight for the sampling distribution is
3,500 grams.
Step-by-step explanation:
The sample mean is the average of the sample values collected divided by the number of the samples, while the population mean is the average or mean of all the values in the population. If the sample is random and the sample size is large enough, then the sample mean would be a good estimator of the population mean. This implies that with a randomly distributed and unbiased sample size, the sample mean and population mean will be equal, according to the central limit theorem. Therefore, the mean of the sample means will always approximate the population mean.
Answer:
this is an english server
Step-by-step explanation:
(Can I have Brainlist?)
Answer:
10%
Step-by-step explanation:
The following information can be gotten from the question regarding the number of people that went to the swimming pool are:
First week of July = 1020
Second week = 1020 - 100 = 920
Third week = 920 + 130 = 1050
Fourth week = 1050 - 132 = 918
The percentage decrease over the four weeks will be:
= (1020 - 918)/1020 × 100
= 102/1020 × 100
= 10%
Let the square base of the container be of side s inches and the height of the container be h inches, then
Surface are of the container, A = s^2 + 4sh
For minimum surface area, dA / ds + dA / dh = 0
i.e. 2s + 4h + 4s = 0
6s + 4h = 0
s = -2/3 h
But, volume of container = 62.5 in cubed
i.e. s^2 x h = 62.5
(-2/3 h)^2 x h = 62.5
4/9 h^2 x h = 62.5
4/9 h^3 = 62.5
h^3 = 62.5 x 9/4 = 140.625
h = cube root of (140.625) = 5.2 inches
s = 2/3 h = 3.47
Therefore, the dimensions of the square base of the container is 3.47 inches and the height is 5.2 inches.
The minimum surface area = s^2 + 4sh = (3.47)^2 + 4(3.47)(5.2) = 12.02 + 72.11 = 84.13 square inches.