Hello <span>Mr1guy24 </span>
Question: <span>Sedimentary rocks are the only rocks that can potentially contain?
</span>
Answer: Fossils (A)
Reason: This is what makes sedimentary rocks unique
Hope This Helps!
-Chris
Answer:
-30 °C
Explanation:
First, we have to calculate the molality (m) of the solution. If the solution is 50% C₂H₆O₂ by mass. It means that in 100 g of solution, the are 50 g of solute (C₂H₆O₂) and 50 g of solvent (water).
The molar mass of C₂H₆O₂ is 62.07 g/mol. The moles of solute are:
50 g × (1 mol / 62.07 g) = 0.81 mol
The mass of the solvent is 50 g = 0.050 kg.
The molality is:
m = 0.81 mol / 0.050 kg = 16 m
The freezing-point depression (ΔT) can be calculated using the following expression.
ΔT = Kf × m = (1.86 °C/m) × 16 m = 30 °C
where,
Kf: freezing-point constant
The normal freezing point for water is 0°C. The freezing point of the radiator fluid is:
0°C - 30°C = -30 °C
Answer:
The answer will be 936 N.
Explanation:
Given that
m = 80 kg
Acceleration of the elevator , a= 1.7 m/s² ( upward)
The gravity force on the mass = m g
The reading on the scale = F N
Now by applying the Newton's second law
F - m g = ma
F= m g + m a
F= m ( g +a )
F= 80 ( 10 + 1.7 ) N ( take g= 10 m/s²)
F=80 x 11.7 N
F= 936 N
Therefore the reading on the scale will be 936 N.
The answer will be 936 N.
The fraction of radioisotope left after 1 day is , with the half-life expressed in days
Explanation:
The question is incomplete: however, we can still answer as follows.
The mass of a radioactive sample after a time t is given by the equation:
where:
is the mass of the radioactive sample at t = 0
is the half-life of the sample
This means that the mass of the sample halves after one half-life.
We can rewrite the equation as
And the term on the left represents the fraction of the radioisotope left after a certain time t.
Therefore, after t = 1 days, the fraction of radioisotope left in the body is
where the half-life must be expressed in days in order to match the units.
Learn more about radioactive decay:
brainly.com/question/4207569
brainly.com/question/1695370
#LearnwithBrainly
Pretty sure its volcanic ash or magma, hope this helps