Answer:
360 degrees is one full rotation starting at zero
Power P is the rate at which energy is generated or consumed and hence is measured in units that represent energy E per unit time t. This is:
P = E/t
Solving for t:
t = E/P
t = 6007 J / 500 W
t = 12.014 s
<h2>
t ≅ 12 s</h2>
Answer:
(a)0.0675 J
(b)0.0675 J
(c)0.0675 J
(d)0.0675 J
(e)-0.0675 J
(f)0.459 m
Explanation:
15g = 0.015 kg
(a) Kinetic energy as it leaves the hand

(b) By the law of energy conservation, the work done by gravitational energy as it rises to its peak is the same as the kinetic energy as the ball leave the hand, which is 0.0675 J
(c) The change in potential energy would also be the same as 0.0675J in accordance with conservation law of energy.
(d) The gravitational energy at peak point would also be the same as 0.0675J
(e) In this case as the reference point is reversed, we would have to negate the original potential energy. So the potential energy as the ball leaves hand is -0.0675J
(f) Since at the maximum height the ball has potential energy of 0.0675J. This means:
mgh = 0.0675
0.015*9.81h = 0.0675
h = 0.459 m
The ball would reach a maximum height of 0.459 m
Answer: GREATER
Explanation:when elevator does not move it reads weight of the person . when elevator moves up let apparent weight be F . W acts downwards so net force is F-W
HENCE
F-W =ma
F= ma+W
AS a= 1 m/s^2
F = m (1)+W
HENCE GREATER
Answer:
y = 67.6 feet, y = 114.4/ (22 - 3t)
Explanation:
For this exercise let's use that light travels in a straight line and some trigonometric relationships, the symbols are in the attached diagram
Large triangle Projector up to the screen
tan θ = y / L
For the small triangle. Projector up to the person
tan θ = y₀ / (L-d)
The angle is the same, so we equate the two equations
y₀ / (L -d) = y / L
y = y₀ L / (L-d)
The distance from the screen (d), we look for it with kinematics
v = d / t
d = v t
we replace
y = y₀ L / (L - v t)
y = 5.2 22 / (22 - 3 t)
y = 114.4 (22 - 3t)⁻¹
This is the equation of the shadow height change as a function of time
For the suggested distance the shadow has a height of
y = 114.4 / (22-13)
y = 67.6 feet