Answer:
The answer to the question is;
The total potential energy of the mass on the spring when the mass is at either endpoint of its motion is 5.0255 Joules.
Explanation:
To answer the question, we note that the maximum speed is 2.30 m/s and the mass is 1.90 kg
Therefore the maximum kinetic energy of motion is given by
Kinetic Energy, KE =
Where,
m = Attached vibrating mass = 1.90 kg
v = velocity of the string = 2.3 m/s
Therefore Kinetic Energy, KE =
×1.9×2.3² = 5.0255 J
From the law of conservation of energy, we have the kinetic energy, during the cause of the vibration is converted to potential energy when the mass is at either endpoint of its motion
Therefore Potential Energy PE at end point = Kinetic Energy, KE at the middle of the motion
That is the total potential energy of the mass on the spring when the mass is at either endpoint of its motion is equal to the maximum kinetic energy.
Total PE = Maximum KE = 5.0255 J.
Answer:
Tension.
<em><u>tension</u></em> is the name of force that opposes or goes opposite of gravity
Hope this helps!
Answer:
La única manera en que nuestro astronauta sería capaz de empujar la nave espacial en el espacio sin alejarse sería usar algo llamado "unidad de propulsión de astronauta". Supongamos que el astronauta está usando un SPK soviético, el sistema de cohetes mochila más poderoso jamás utilizado en el espacio.
Explanation:
Answer:
Explanation:
Theoretical efficiency = T₁ - T₂ / T₁ where T₁ and T₂ is absolute temperature of hot and cold end of the heat engine.
= 600 / (273 + 700 )
= 600 / 973
= .6166
operating efficiency = 40% of .6166
= .4 x .6166
= .2466 = 24.66 %
efficiency = work output / heat input
= 5000 / heat input = .2466
heat input = 5000 / .2466
= 20275.75 J .
HEAT EXTRACED = 20275.75 J.
Resitance (R)= 10 Ohm
Potential difference (V) = 9V
V= IR
I= V/R
I= 9/10
I= 0.9 Ampere
Therefore 0.9 Ampere of current is flowing through the circuit.