Answer:
The sled needed a distance of 92.22 m and a time of 1.40 s to stop.
Explanation:
The relationship between velocities and time is described by this equation:
, where
is the final velocity,
is the initial velocity,
the acceleration, and
is the time during such acceleration is applied.
Solving the equation for the time, and applying to the case:
, where
because the sled is totally stopped,
is the velocity of the sled before braking and,
is negative because the deceleration applied by the brakes.
In the other hand, the equation that describes the distance in term of velocities and acceleration:
, where
is the distance traveled,
is the initial velocity,
the time of the process and,
is the acceleration of the process.
Then for this case the relationship becomes:
.
<u>Note that the acceleration is negative because is a braking process.</u>
The chemical formular for water is H2O.
The H aspect of the formula stands for hydrogen gas and the subscript 2 which is attached to the H symbol signifies that two atoms of hydrogen are joined together, that is two atom of hydrogen are present.
The chemical formula of water indicates that, two atom of hydrogen react with one atom of oxygen to form one molecule of water.
In chemical formulae, subscripts are normally used to indicate the number of atoms that are present in a molecule.
For this problem, we would be using the formula: Vf^2 = Vi^2 + 2ad
where:
Vf = 400m/s
Vi = 300m/s
a = ?
d = 4.0km
= 4000m
400^2 = 300^2 + 2a4000
a = [ 160000 - 90000 ] / 8000
a = 8.75m/s^2
rounding it off to 2 significant figures, will give us 8.8 m/s^2.