It would be D I believe! Depending on the angle of the mirror and distance positioned!
Answer:
c. 2 MeV.
Explanation:
The computation of the binding energy is shown below
![= [Zm_p + (A - Z)m_n - N]c^2\\\\=[(1) (1.007825u) + (2 - 1 ) ( 1.008665 u) - 2.014102 u]c^2\\\\= (0.002388u)c^2\\\\= (.002388) (931.5 MeV)\\\\=2.22 MeV](https://tex.z-dn.net/?f=%3D%20%5BZm_p%20%2B%20%28A%20-%20Z%29m_n%20-%20N%5Dc%5E2%5C%5C%5C%5C%3D%5B%281%29%20%281.007825u%29%20%2B%20%282%20-%201%20%29%20%28%201.008665%20u%29%20-%202.014102%20u%5Dc%5E2%5C%5C%5C%5C%3D%20%280.002388u%29c%5E2%5C%5C%5C%5C%3D%20%28.002388%29%20%28931.5%20MeV%29%5C%5C%5C%5C%3D2.22%20MeV)
= 2 MeV
As 1 MeV = (1 u) c^2
hence, the binding energy is 2 MeV
Therefore the correct option is c.
We simply applied the above formula so that the correct binding energy could come
And, the same is to be considered
As the density of the unknown substance is 0.68g/0.8ml = 0.85g/ml, it is less dense than the maple syrup at 1.33g/ml and will float.
The initial height of the first body is given by:

where
g is the gravitational acceleration
t is the time it takes for the body to reach the ground
Substituting t=1 s, we find

The second body takes takes t=2 s to reach the ground, so it was located at an initial height of

The second body started its fall 1 second before the first body, therefore when the second body started its fall, the first body was located at its initial height, i.e. at 4.9 m from the ground.