Answer:
It will take you 30.8 s to travel the 120 m of the ramp.
Explanation:
Hi there!
The equation for the position of an object moving in a straight line is:
x = x0 + v * t
Where:
x = position at time t
x0 = initial position
v = velocity
t = time
In this case, we will consider the start of the ramp as the origin of our reference system so that x0 = 0.
Now, let´s calculate the speed of the person walking on the ground:
x = v * t
120 m = v * 72 s
v = 120 m / 72 s
v = 1.7 m/s
If you walk on the ramp with that speed, your total speed will be your walking speed plus the speed of the ramp because both are in the same direction. Then, using the equation for the position:
x = v * t
In this case, v = speed of the ramp + walking speed
v = 2.2 m/s + 1.7 m/s = 3.9 m/s
120 m = 3.9 m/s * t
t = 120 m / 3.9 m/s = 30.8 s
It will take you 30.8 s to travel the 120 m
Answer:
a positive test charge will move in the field
Explanation:
The direction of an electric field corresponds to the direction of motion of a positive test charge in the electric field. In fact:
- the electric field produced by a positive charge points outwards the charge --> this is because when a positive test charge is placed in this field, it will feel a repulsive force (because two positive charges repel each other), so it will move away from the positive charge that produces the field
- the electric field produced by a negative charge points towards the charge itself--> this is because when a positive test charge is placed in this field, it will feel an attractive force (because a positive and a negative charge attract each other), so it will move toward the negative charge that produces the field.
Explanation:
The speed of an object can be found from the slope of the line which plots its distance over time. The object in motion's speed can be compared with another by the value of the slope or the steepness of the line. The steeper the slope is, the greater the speed.
Answer:


-0.04194 V
Explanation:
= Number of turns in outer solenoid = 330
= Number of turns in inner solenoid = 22
= Current in inner solenoid = 0.14 A
= Rate of change of current = 1800 A/s
= Vacuum permeability = 
r = Radius = 0.0115 m
Magnetic field is given by

The average magnetic flux through each turn of the inner solenoid is 
Magnetic flux is given by

Mutual inductance is given by

The mutual inductance of the two solenoids is 
Induced emf is given by

The emf induced in the outer solenoid by the changing current inthe inner solenoid is -0.04194 V