According to Newton's first law of motion, it is the natural tendency of all moving objects to continue in motion in the same direction that they are moving ... unless some form of unbalanced force acts upon the object to deviate its motion from its straight-line path.
Hope this helped, have a great day!
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>
Answer:
The magnitude of the voltage is
and the direction of the current is clockwise.
Explanation:
Given that,
Number of turns = 9
Magnetic field = 0.5 T
Diameter = 3 cm
Time t = 0.14 s
We need to calculate the flux
Using formula of flux

Put the value into the formula


We need to calculate the emf
Using formula of emf




Negative sign shows the direction of current.
Hence, The magnitude of the voltage is
and the direction of the current is clockwise.
A) 
The energy of an x-ray photon used for single dental x-rays is

The energy of a photon is related to its wavelength by the equation

where
is the Planck constant
is the speed of light
is the wavelength
Re-arranging the equation for the wavelength, we find

B) 
The energy of an x-ray photon used in microtomography is 2.5 times greater than the energy of the photon used in part A), so its energy is

And so, by using the same formula we used in part A), we can calculate the corresponding wavelength:
