Answer:
Correct answer: t = 2.86 seconds
Explanation:
We first use this formula
V² - V₀² = 2 a d
where V is the final velocity (speed), V₀ the initial velocity (speed),
a the acceleration and d the distance.
We will calculate the acceleration from this formula
a = (V² - V₀²) / (2 d) = (2.5² - 1²) / (2 · 5) = (6.25 - 1) / 10 = 5.25 / 10
a = 0.525 m/s²
then we use this formula
V = V₀ + a t => t = (V - V₀) / a = (2.5 - 1) / 0.525 = 1.5 / 0.525 = 2.86 seconds
t = 2.86 seconds
God is with you!!!
Answer:
option C
Explanation:
given,
mass of the three planet is same
radius of the planets are
R₁ > R₂ > R₃
expression of escape velocity

G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
from the above expression we can clearly conclude that the escape velocity is inversely proportional to the radius of the Planet.
radius of planet increases escape velocity decreases.
Hence planet 3 has the smallest radius so the escape velocity of the third planet will be maximum.
The correct answer is option C
The density value 3.291 g/ml (gram / milliliter) in words is "three point two nine one g/ml (gram / milliliter)".
=)
The answer to this is aluminum foil.