Answer and Explanation:
The crack formation growth that takes place in an environment corrosive.
Stress corrosion cracks can be defined as the spontaneous failures of the metal alloy as a result of the combined action of corrosion and high tensile stress.
Some of the characteristic features of stress corrosion cracks are:
- These occur at high temperatures.
- Occurrence of failures in metals mechanically.
- Occurrence of sudden and unexpected failures under tensile stress.
- The rate of work hardening of the metal alloy is high.
- Time
- An environment that is specific for stress corrosion cracking.
Numerical weather prediction (NWP) uses mathematical models of the atmosphere and oceans to predict the weather based on current weather conditions. Though first attempted in the 1920s, it was not until the advent of computer simulation in the 1950s that numerical weather predictions produced realistic results. A number of global and regional forecast models are run in different countries worldwide, using current weather observations relayed from radiosondes, weather satellites and other observing systems as inputs.
Answer:
the surface heat-transfer coefficient due to natural convection during the initial cooling period. = 4.93 w/m²k
Explanation:
check attachement for answer explanation
Answer:
1. The magnetic flux line form a closed loop.
2. The magnetic flux line repel each other.
3. The magnetic flux line never intersect.
Given Information:
Initial temperature of aluminum block = 26.5°C
Heat flux = 4000 w/m²
Time = 2112 seconds
Time = 30 minutes = 30*60 = 1800 seconds
Required Information:
Rise in surface temperature = ?
Answer:
Rise in surface temperature = 8.6 °C after 2112 seconds
Rise in surface temperature = 8 °C after 30 minutes
Explanation:
The surface temperature of the aluminum block is given by

Where q is the heat flux supplied to aluminum block, k is the conductivity of pure aluminum and α is the diffusivity of pure aluminum.
After t = 2112 sec:

The rise in the surface temperature is
Rise = 35.1 - 26.5 = 8.6 °C
Therefore, the surface temperature of the block will rise by 8.6 °C after 2112 seconds.
After t = 30 mins:

The rise in the surface temperature is
Rise = 34.5 - 26.5 = 8 °C
Therefore, the surface temperature of the block will rise by 8 °C after 30 minutes.