Answer:B
Explanation:
Given
speed of car ![v=10 m/s](https://tex.z-dn.net/?f=v%3D10%20m%2Fs)
mass of clump ![m=0.5 kg](https://tex.z-dn.net/?f=m%3D0.5%20kg)
Radius of car tire ![r=0.2 m](https://tex.z-dn.net/?f=r%3D0.2%20m)
Since the tire is rotating about axle so a centripetal force is acting constantly on each particle towards the center of tire.
Centripetal force is given by
![F_c=\frac{mv^2}{r}](https://tex.z-dn.net/?f=F_c%3D%5Cfrac%7Bmv%5E2%7D%7Br%7D)
where ![m=mass\ of\ element](https://tex.z-dn.net/?f=m%3Dmass%5C%20of%5C%20element%20)
![v=speed](https://tex.z-dn.net/?f=v%3Dspeed)
![r=distance\ from\ center](https://tex.z-dn.net/?f=r%3Ddistance%5C%20from%5C%20center)
![F_c=\frac{0.5\times 10^2}{0.2}](https://tex.z-dn.net/?f=F_c%3D%5Cfrac%7B0.5%5Ctimes%2010%5E2%7D%7B0.2%7D)
(inward)
Answer:
0.03167 m
1.52 m
Explanation:
x = Compression of net
h = Height of jump
g = Acceleration due to gravity = 9.81 m/s²
The potential energy and the kinetic energy of the system is conserved
![P_i=P_f+K_s\\\Rightarrow mgh_i=-mgx+\frac{1}{2}kx^2\\\Rightarrow k=2mg\frac{h_i+x}{x^2}\\\Rightarrow k=2\times 65\times 9.81\frac{18+1.1}{1.1^2}\\\Rightarrow k=20130.76\ N/m](https://tex.z-dn.net/?f=P_i%3DP_f%2BK_s%5C%5C%5CRightarrow%20mgh_i%3D-mgx%2B%5Cfrac%7B1%7D%7B2%7Dkx%5E2%5C%5C%5CRightarrow%20k%3D2mg%5Cfrac%7Bh_i%2Bx%7D%7Bx%5E2%7D%5C%5C%5CRightarrow%20k%3D2%5Ctimes%2065%5Ctimes%209.81%5Cfrac%7B18%2B1.1%7D%7B1.1%5E2%7D%5C%5C%5CRightarrow%20k%3D20130.76%5C%20N%2Fm)
The spring constant of the net is 20130.76 N
From Hooke's Law
![F=kx\\\Rightarrow x=\frac{F}{k}\\\Rightarrow x=\frac{65\times 9.81}{20130.76}\\\Rightarrow x=0.03167\ m](https://tex.z-dn.net/?f=F%3Dkx%5C%5C%5CRightarrow%20x%3D%5Cfrac%7BF%7D%7Bk%7D%5C%5C%5CRightarrow%20x%3D%5Cfrac%7B65%5Ctimes%209.81%7D%7B20130.76%7D%5C%5C%5CRightarrow%20x%3D0.03167%5C%20m)
The net would strech 0.03167 m
If h = 35 m
From energy conservation
![65\times 9.81\times (35+x)=\frac{1}{2}20130.76x^2\\\Rightarrow 10065.38x^2=637.65(35+x)\\\Rightarrow 35+x=15.785x^2\\\Rightarrow 15.785x^2-x-35=0\\\Rightarrow x^2-\frac{200x}{3157}-\frac{1000}{451}=0](https://tex.z-dn.net/?f=65%5Ctimes%209.81%5Ctimes%20%2835%2Bx%29%3D%5Cfrac%7B1%7D%7B2%7D20130.76x%5E2%5C%5C%5CRightarrow%2010065.38x%5E2%3D637.65%2835%2Bx%29%5C%5C%5CRightarrow%2035%2Bx%3D15.785x%5E2%5C%5C%5CRightarrow%2015.785x%5E2-x-35%3D0%5C%5C%5CRightarrow%20x%5E2-%5Cfrac%7B200x%7D%7B3157%7D-%5Cfrac%7B1000%7D%7B451%7D%3D0)
Solving the above equation we get
![x=\frac{-\left(-\frac{200}{3157}\right)+\sqrt{\left(-\frac{200}{3157}\right)^2-4\cdot \:1\left(-\frac{1000}{451}\right)}}{2\cdot \:1}, \frac{-\left(-\frac{200}{3157}\right)-\sqrt{\left(-\frac{200}{3157}\right)^2-4\cdot \:1\left(-\frac{1000}{451}\right)}}{2\cdot \:1}\\\Rightarrow x=1.52, -1.45](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-%5Cleft%28-%5Cfrac%7B200%7D%7B3157%7D%5Cright%29%2B%5Csqrt%7B%5Cleft%28-%5Cfrac%7B200%7D%7B3157%7D%5Cright%29%5E2-4%5Ccdot%20%5C%3A1%5Cleft%28-%5Cfrac%7B1000%7D%7B451%7D%5Cright%29%7D%7D%7B2%5Ccdot%20%5C%3A1%7D%2C%20%5Cfrac%7B-%5Cleft%28-%5Cfrac%7B200%7D%7B3157%7D%5Cright%29-%5Csqrt%7B%5Cleft%28-%5Cfrac%7B200%7D%7B3157%7D%5Cright%29%5E2-4%5Ccdot%20%5C%3A1%5Cleft%28-%5Cfrac%7B1000%7D%7B451%7D%5Cright%29%7D%7D%7B2%5Ccdot%20%5C%3A1%7D%5C%5C%5CRightarrow%20x%3D1.52%2C%20-1.45)
The compression of the net is 1.52 m
Resistance can be calculated by Ohm's law
As per ohm's law we will have
![V = i * R](https://tex.z-dn.net/?f=%20V%20%3D%20i%20%2A%20R)
here we will have
voltage = 220 volts
current = 10 A
So by the above formula we will have
![220 = 10* R](https://tex.z-dn.net/?f=220%20%3D%2010%2A%20R)
![R = 22 ohm](https://tex.z-dn.net/?f=R%20%3D%2022%20ohm)
So resistance of the bulb is 22 ohm.
Answer:
Revolutions made before attaining angular velocity of 30 rad/s:
θ = 3.92 revolutions
Explanation:
Given that:
L(final) = 10.7 kgm²/s
L(initial) = 0
time = 8s
<h3>
Find Torque:</h3>
Torque is the rate of change of angular momentum:
![T = \frac{L(final)-L(initial)}{t}\\T = \frac{10.7-0}{8}\\T=1.34 Nm](https://tex.z-dn.net/?f=T%20%3D%20%5Cfrac%7BL%28final%29-L%28initial%29%7D%7Bt%7D%5C%5CT%20%3D%20%5Cfrac%7B10.7-0%7D%7B8%7D%5C%5CT%3D1.34%20Nm)
<h3>Find Angular Acceleration:</h3>
We know that
T = Iα
α = T/I
where I = moment of inertia = 2.2kgm²
α = 1.34/2.2
α = 0.61 rad/s²
<h3>
Find Time 't'</h3>
We know that angular equation of motion is:
ω²(final) = ω²(initial) +2αθ
(30 rad/s)² = 0 + 2(0.61 rad/s²)θ
θ = (30 rad/s)²/ 2(0.61 rad/s²)
θ = 24.6 radians
Convert it into revolutions:
θ = 24.6/ 2π
θ = 3.92 revolutions
Answer:
option C
Explanation:
the ball is moving circular around the pole
Angular momentum of the system is constant
J = I ω
now,
![\omega\ \alpha\ \dfrac{1}{I}](https://tex.z-dn.net/?f=%5Comega%5C%20%5Calpha%5C%20%5Cdfrac%7B1%7D%7BI%7D)
![\omega\ \alpha\ \dfrac{1}{mr^2}](https://tex.z-dn.net/?f=%5Comega%5C%20%5Calpha%5C%20%5Cdfrac%7B1%7D%7Bmr%5E2%7D)
![\omega\ \alpha\ \dfrac{1}{r^2}](https://tex.z-dn.net/?f=%5Comega%5C%20%5Calpha%5C%20%5Cdfrac%7B1%7D%7Br%5E2%7D)
the rope radius is decreasing as it revolving around the pole
angular speed is inversely proportional to radius.
so, the angular speed will increase.
The correct answer is option C