Answer:
125.83672 seconds
Explanation:
P = Power of the horse = 1 hp = 746 W (as it is not given we have assumed the horse has the power of 1 hp)
m = Mass of professor = 103 kg
g = Acceleration due to gravity = 9.8 m/s²
h = Height of professor = 93 m
Work done would be equal to the potential energy

Power is given by

The time taken by the horse to pull the professor is 125.83672 seconds
The first law of thermodynamics is expresses by
D. ΔU=Q-W
which means change in internal energy of system = Heat added to system minus work done by the system
All are expressed in Joules.
This law is based on principle of conservation of energy.
<span>They would feel that the water is cold.
</span> The atmosphere is heated both by the Sun and by the Earth's surface. Water radiates heat differently than land, so the air temperature over the ocean is usually different than the air temperature over land. <span>
The difference in air temperature over land compared to over water causes convection currents in the atmosphere. How would a person at the beach experience these convection currents?
</span>They would feel that the water is cold.
NOT:
They would feel the heat of the Sun.
They would feel that the sand is hot.
<span>They would feel wind as the air moves.</span>
<span>Radius, the distance from the centre = 0.390
Electric field is equal to half of the magnitude. E2 = E / 2
Given
E1 = E2
E1 = k x Q / r^2
E2 = (k x Q / r2^2) / 2
Equating the both we get 2 x r^2 = r2^2
r2 = square root of (2 x r1^2) = square root of (2) x r = 1.414 x 0.390
r2 = 1.414 x 0.390 = 0.551 m</span>
Answer:
68 readings.
Explanation:
We need to take this problem as a statistic problem where the normal distribution table help us.
We can start considerating that X is the temperature of the solution, then



For a confidence level of 90% our
is 1.645
Therefore,

Substituting for
and re-arrange for n, we have that n is equal to




We need to make 68 readings for have a probability of 90% and our average is within 