Answer:
Explanation:
Let i be the angle of incidence and r be the angle of refraction .
From the figure
Tan ( 90 - i ) = 2.5 / 8
cot i = 2.5 / 8
Tan i = 8 / 2.5 = 3.2
i = 72.65°
From snell's law
sini / sin r = refractive index
sin 72.65 / sinr = 1.333
sin r = .9545 / 1.333
= .72
r = 46⁰
From the figure
Tan r = d / 4
Tan 46 = d /4
d = 4 x Tan 46
= 4 x 1.0355
=4.14 m .
Data:

n (Wave node)
V (Wave belly)
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>

Wire 2 → 2º Harmonic → n = 2







Wire 1 → 1º Harmonic or Fundamental rope → n = 1



If, We have:
V = 42L
Soon:



Answer:
<span>The fundamental frequency of the string:
</span>
21 Hz
Answer:
Yes, the velocity of the object can reverse direction when its acceleration is constant. For example consider that the velocity of any object at any time t is given as: ... At At t = 0 sec, the magnitude of velocity is 2m/s and is moving in the forward direction i.e.v (t) = -2.
Parfocal is the term used to describe a microscope that maintains focus when the objective lenses are replaced.
<h3>
What is the name of the objective lens ?</h3>
For observing minute features within a specimen sample, a high-powered objective lens, often known as a "high dry" lens, is perfect. You can see a very detailed image of the specimen on your slide thanks to the 400x total magnification that a high-power objective lens and a 10x eyepiece provide.
The four objective lenses on your microscope are for scanning (4x), low (10x), high (40x), and oil immersion (100x).
The first-stage lens used to create a picture from electrons leaving the specimen is referred to as the "objective lens." The objective lens is the most crucial component of the imaging system since the quality of the images is determined by how well it performs (resolution, contrast, etc.,).
To learn more than objective lens , visit
brainly.com/question/17307577
#SPJ4