<span>Most low-level radioactive waste (LLW) is typically sent to land-based disposal immediately following its packaging for long-term management. This means that for the majority (~90% by volume) of all of the waste types produced by nuclear technologies, a satisfactory disposal means has been developed and is being implemented around the world.
</span>
Radioactive wastes are stored so as to avoid any chance of radiation exposure to people, or any pollution.The radioactivity of the wastes decays with time, providing a strong incentive to store high-level waste for about 50 years before disposal.Disposal of low-level waste is straightforward and can be undertaken safely almost anywhere.Storage of used fuel is normally under water for at least five years and then often in dry storage.<span>Deep geological disposal is widely agreed to be the best solution for final disposal of the most radioactive waste produced.
</span>I suggest this site on this subject http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-wastes/storage-and-dispo...
Answer:
27.44 J
Explanation:
We can find the energy at the top of the slide by using the potential energy equation:
At the top of the slide, the swimmer has 0 kinetic energy and maximum potential energy.
The swimmer's mass is given as 7.00 kg.
The acceleration due to gravity is 9.8 m/s².
The (vertical) height of the water slide is 0.40 m.
Substitute these values into the potential energy equation:
- PE = (7.00)(9.8)(0.40)
- PE = 27.44
Since there is 0 kinetic energy at the top of the slide, the total energy present is the swimmer's potential energy.
Therefore, the answer is 27.44 J of energy when the swimmer is at the top of the slide.
Well, first of all, EVERY physical quantity is measured in a combination
of 2 or more units, except for mass, length, time, and electric charge.
ALL other units are made out of these. So it should not surprise you.
[ Example: Speed = (length) / (time) ]
Density is not the mass of a substance. It's the mass of a substance in
a standard volume of it. So the density is made of the mass in any lump
and the volume of that lump. That way, no matter how much of a substance
you have, you can always compare the lump you have to all other substances.
Answer:
F = 19.1 N
Explanation:
To find the force exerted by the string on the block you use the following formula:
(1)
k: spring constant = 95.5 N/m
x: displacement of the block from its equilibrium position = 0.200 m
you replace the values of k and x in the equation (1):

Hence, the force exterted on the block is 19.1 N