Answer:
14 m/s
Explanation:
The motion of the stone is a free fall motion, so an accelerated motion with constant acceleration g = 9.8 m/s^2 towards the ground. So, we can use the following SUVAT equation:

where
v is the final speed of the stone as it reaches the water
u = 0 is the initial speed
g = 9.8 m/s^2 is the acceleration
h = 10 m is the distance covered by the stone
Solving for v, we find

(d) President McKinley did not want war.
The time taken for the light to travel from the camera to someone standing 7 m away is 2.33×10¯⁸ s
Speed is simply defined as the distance travelled per unit time. Mathematically, it is expressed as:
<h3>Speed = distance / time </h3>
With the above formula, we can obtain the time taken for the light to travel from the camera to someone standing 7 m away. This can be obtained as follow:
Distance = 7 m
Speed of light = 3×10⁸ m/s
<h3>Time =?</h3>
Time = Distance / speed
Time = 7 / 3×10⁸
<h3>Time = 2.33×10¯⁸ s</h3>
Therefore, the time taken for the light to travel from the camera to someone standing 7 m away is 2.33×10¯⁸ s
Learn more: brainly.com/question/14988345