True.
Density = mass / volume, Unit = g / cm³.
This is a common unit because of its affiliation with the SI unit and because that also our popular liquid which is water = 1 g/cm³
Answer:
1.68 s
Explanation:
From newton's equation of motion,
a = (v-u)/t.................................. Equation 1
Making t the subject of the equation
t =(v-u)g............................. Equation 2
Where t = time taken for the bowling pin to reach the maximum height, v = final velocity bowling pin, u = initial velocity of the bowling pin, g = acceleration due to gravity.
Note: Taking upward to be negative and down ward to be positive,
Given: v = 0 m/s ( at the maximum height), u = 8.20 m/s, g = -9.8 m/s²
t = (0-8.20)/-9.8
t = -8.20/-9.8
t = 0.84 s.
But,
T = 2t
Where T = time taken for the bowling pin to return to the juggler's hand.
T = 2(0.84)
T = 1.68 s.
T = 1.68 s
Answer:
351 ohm
720 ohm
Explanation:
When c and d are open:
Terminals c and d are open.. If you redraw the circuit as below, you can see that the two resistors in the first column are in parallel as, they are connected together at both pairs of terminals (due to the short).
Hence, we have a pair of parallel resistors:
Req1 = (R1*R2)/ (R1 + R2) = 360*540/(360+540) = 216 ohms
Req2 = (R3*R4)/ (R3 + R4) = 180*540/(180+540) = 135 ohms
Now these two sets are in series with another Hence,
Req = Req1 + Req2 = 216 + 135 = 351 ohms
Answer: 351 ohms
When c and d are shorted:
The current will flow through the least resistant path naturally from resistors R3 and R1 or R4.
Both of these resistor lie in a single path placing the resistors in series to one another, hence
Req = R3 + R1 = 180 + 540 = 720 ohms
Answer:720 ohms
Answer:
nothing travels faster than light
Example:
You’ll always see lightning before you hear it, because typically lightning will be a mile away, two miles away.
Answer:
ugmd = 1/2 kx²
d = (1/2 kx²) / (ugm)
= (1/2 * 250 N/m * (0.2 m)²) / (0.23 * 9.81 m/s² * 0.3 kg)
= 7.4 m
ugmd = 1/2 mv²
v = √2ugd
= √(2(0.23)(9.81 m/s²)(7.4 m)
= 5.8 m/s
Explanation: