Answer:

Explanation:
Given data:



Let the distance traveled by the object in the second case be 
In the given problem, work done by the forces are same in both the cases.
Thus,





A. electrons<span> and </span>neutrons<span> B. </span>electrons<span> and </span>protons<span> C. </span>protons<span> and </span>neutrons<span> D. all particles are attracted to each other. According to atomic theory, </span>electrons<span> are usually found: A. in the </span>atomic nucleus<span> B. outside the nucleus, yet very near it because they are attracted to the </span>protons<span>.</span>
Answer:
Proper weighting
Explanation:
Proper weighing involves the condition of a scuba diver that is fully geared having a near empty tank and the BCD emptied with a held breadth is expected to float at eye level
The fundamental of adequate or good buoyancy of a scuba diver is to ensure proper weighting when diving, With proper weighting, there is more control for the diver when a safety stop is required. There is less need to carry excess weight that increases drag and gas consumption.
Answer:
it have Potential energy
Explanation:
given data
Drag the pendulum to an angle 30∘
to find out
what form of energy does it have
solution
we know that pendulum start no kinetic energy when it release from any rest position then in starting it have potential energy only so that when pendulum is angle 30∘ at some height from ground so when it start it have potential energy same as in starting.
we know that the total energy is always conserve
so it have potential energy
Since, F = k . ∆x
Therefore, k = F / ∆x = 250 / 0.2 = 1250 N/m
(ps: convert 20 cm into 0.2 m)