False, the inertia does not keep us moving in a circle on a spinning ride at the fair.
Answer: Option B
<u>Explanation:
</u>
Inertia is the resisting force of any object which resists in change in their state. If an object is moving the inertia will act in opposing direction to the force acting on the object stopping its motion.
Similarly, if an object resembles at rest, then the inertia will be acting against the force tending to move that stationary object. So, on a spinning ride at fair, when a person sits there, the inertia acting on the person will prevent the person to falling down from the fair and not in moving in a circle.
Answer:
71 rpm
Explanation:
Given that:
Angular momentum (L) = 0.26
Diameter = 25cm = 0.25 cm
Radius, r = (d/2) = 0.125m
Mass = 5.6 kg
Moment of inertia (I) = 2mr² / 5
I = (2 * 5.6 * 0.125^2) / 5
= 0.175
= 0.175 / 5
= 0.035 kgm²
Angular speed (w) ;
w = L / I
w = 0.26 / 0.035
= 7.4285714
= 7.429 rad/s
w = (7.429 * 60/2π)
w = 445.74 / 2π rpm
w = 70.941724
Angular speed = 70.94 rpm
= 71 rpm
Answer:
energy is equal to 1000 J
Explanation:
When the jumper is in the tent, he has a given height, this height gives him a gravitational potential energy, which forms his initial mechanical energy of 1000 J. After jumping, this energy is converted into elastic energy of the rope plus a remainder of potential energy gravitational, it does not reach the ground, but as the friction is negligible the total mechanical energy is conserved, therefore its energy is equal to 1000 J
This is a case of energy transformation, but the total value of mechanical energy does not change
Gravitational energy is a form of potential energy because it is dependent on the mass of an object and needs to be calculated for the specific object.
86.4×10^6 joule is energy does one house use during each 24 hr day.
20 MJ of light energy
Consumption of electricity is 1 kW.
The energy consumption lasts for 24 hours.
energy=power×time
energy=10^3×24×3600
energy=86.4×10^6 joule
Energy in physics is the ability to perform work. Different shapes, such as potential, kinetic, thermal, electrical, chemical, radioactive, etc., may be assumed by it. Other examples of energy being transferred from one body to another include heat and work. Energy is always distributed after it has been transported in accordance with its type. Thus, heat transfer could result in thermal energy, whereas work could result in mechanical energy.
Motion is a trait shared by all forms of energy. For instance, if a body is moving, it has kinetic energy. Due to the object's design, which incorporates potential energy, a tensioned object, like a spring or bow, has the ability to move even when at rest.
To know more about energy visit : brainly.com/question/1932868
#SPJ4