Yes, because cell phones use scientific structure to build.
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Answer:
He sees the ball coming at him at 150 km/hr.
Explanation:
In Newtonian physics, the observer would say that the velocity of the first object is the sum of the two velocities.
Due to the same direction, both velocities will be added.
Answer:
longitudinal and transverse.
Explanation:
plzzzzzzz Mark my answer in brainlist
Answer:
E = 9.4 10⁶ N / C
, The field goes from the inner cylinder to the outside
Explanation:
The best way to work this problem is with Gauss's law
Ф = E. dA = qint / ε₀
We must define a Gaussian surface, which takes advantage of the symmetry of the problem. We select a cylinder with the faces perpendicular to the coaxial.
The flow on the faces is zero, since the field goes in the radial direction of the cylinders.
The area of the cylinder is the length of the circle along the length of the cable
dA = 2π dr L
A = 2π r L
They indicate that the distance at which we must calculate the field is
r = 5 R₁
r = 5 1.3
r = 6.5 mm
The radius of the outer shell is
r₂ = 10 R₁
r₂ = 10 1.3
r₂ = 13 mm
r₂ > r
When comparing these two values we see that the field must be calculated between the two housings.
Gauss's law states that the charge is on the outside of the Gaussian surface does not contribute to the field, the charged on the inside of the surface is
λ = q / L
Qint = λ L
Let's replace
E 2π r L = λ L /ε₀
E = 1 / 2piε₀ λ / r
Let's calculate
E = 1 / 2pi 8.85 10⁻¹² 3.4 10-12 / 6.5 10-3
E = 9.4 10⁶ N / C
The field goes from the inner cylinder to the outside