No, gravity acts equally on all objects. The crumpled paper falls faster because it resists the drag force due to the atmosphere because of its compact size. A flat piece of paper has an extended body and "catches" the air and falls more slowly. In a vacuum they would fall at the same rate either way.
Answer:
Rate of change of area will be 
Explanation:
We have given rate of change of radius 
Radius of the circular plate r = 52 cm
Area is given by 
So 
Puting the value of r and 

So rate of change of area will be 
The phenomenon of inducing voltage by changing the magnetic field around a conductor will be Electromagnetic Induction. Option B is correct.
<h3>What is the Faraday law of electromagnetic induction?</h3>
According to Faraday's law of electromagnetic induction, the rate of change of magnetic flux link with the coil is responsible for generating emf in the coil to result in the flow of amount of current .
So in order to increase the current, we need to increase the EMF;
so we can increase it by;
1) Increasing the number of turns
2) Increase the area of the loop
3) By moving the magnet faster
Hence, option B is correct.
To learn more about Faraday law of electromagnetic induction:
brainly.com/question/13369951
#SPJ1
Answer:
A theory changes based on new observations and testing.
Explanation:
A scientific theory is a product of multiple trials and repeated experiments. It usually follows after carefully conducting and testing the validity of the hypothesis.
A scientific theory provides an explanation into how something behaves.
A law just states a finding will not explain it.
Most theories are tenable and can be improved upon when new observations and testing are carried out.
Here we deal with a lever law. It states that product of force and distance from a fixed point on a lever is equal on both sides.
F₁*d₁ = F₂*d₂
By analysing this formula we can see that applying small force on a great length equals great force on a small length.
To remove nail we need to apply certain force. If we use F₁ for this required force we can see that on other side we need to apply certain force. If we have greater arm length we need smaller force. In a crowbar arm length along which we apply force is greater than length of our arm. This leads to a conclusion that we need smaller force when using crowbar. Depending on the length of a nail it is possible that we need to apply force that is greater than force required to remove nail.