Answer: A
Explanation: Boiling point increases with the rise of electrons.
Here’s one way to do it.
1. Fill the 6 cm cup.
2. Pour its contents into the 10 cm cup. This leaves 4 cm yet to be filled.
3. Refill the 6 cm cup and use it to fill the 10 cm cup. This leaves 2 cm in the 6 cm cup.
4. Empty the 10 cm cup and add the 2 cm from the 6 cm cup.
5. Refill the 6 cm cup.
6. Pour its contents into the 10 cm cup.
The 10 cm cup now contains 8 cm of water.
Answer:
- Handpicking
- Threshing
- Winnowing
- Sieving
- Evaporation
- Distillation
- Filtration or Sedimentation
- Separating Funnel
- Magnetic Separation
Explanation:
You said at least 6 methods meaning I can give more than 6.
Hope it helps.
Answer:
It is correct because iron is more reactive than silver.
Explanation:
Answer:
Explanation:
Assume that you have mixed 135 mL of 0.0147 mol·L⁻¹ NiCl₂ with 190 mL of 0.250 mol·L⁻¹ NH₃.
1. Moles of Ni²⁺

2. Moles of NH₃

3. Initial concentrations after mixing
(a) Total volume
V = 135 mL + 190 mL = 325 mL
(b) [Ni²⁺]

(c) [NH₃]

3. Equilibrium concentration of Ni²⁺
The reaction will reach the same equilibrium whether it approaches from the right or left.
Assume the reaction goes to completion.
Ni²⁺ + 6NH₃ ⇌ Ni(NH₃)₆²⁺
I/mol·L⁻¹: 6.106×10⁻³ 0.1462 0
C/mol·L⁻¹: -6.106×10⁻³ 0.1462-6×6.106×10⁻³ 0
E/mol·L⁻¹: 0 0.1095 6.106×10⁻³
Then we approach equilibrium from the right.
Ni²⁺ + 6NH₃ ⇌ Ni(NH₃)₆²⁺
I/mol·L⁻¹: 0 0.1095 6.106×10⁻³
C/mol·L⁻¹: +x +6x -x
E/mol·L⁻¹: x 0.1095+6x 6.106×10⁻³-x
![K_{\text{f}} = \dfrac{\text{[Ni(NH$_{3}$)$_{6}^{2+}$]}}{\text{[Ni$^{2+}$]}\text{[NH$_{3}$]}^{6}} = 2.0 \times 10^{8}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bf%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BNi%28NH%24_%7B3%7D%24%29%24_%7B6%7D%5E%7B2%2B%7D%24%5D%7D%7D%7B%5Ctext%7B%5BNi%24%5E%7B2%2B%7D%24%5D%7D%5Ctext%7B%5BNH%24_%7B3%7D%24%5D%7D%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D)
Kf is large, so x ≪ 6.106×10⁻³. Then
![K_{\text{f}} = \dfrac{\text{[Ni(NH$_{3}$)$_{6}^{2+}$]}}{\text{[Ni$^{2+}$]}\text{[NH$_{3}$]}^{6}} = 2.0 \times 10^{8}\\\\\dfrac{6.106 \times 10^{-3}}{x\times 0.1095^{6}} = 2.0 \times 10^{8}\\\\6.106 \times 10^{-3} = 2.0 \times 10^{8}\times 0.1095^{6}x= 345.1x\\x= \dfrac{6.106 \times 10^{-3}}{345.1} = 1.77 \times 10^{-5}\\\\\text{The concentration of Ni$^{2+}$ at equilibrium is $\large \boxed{\mathbf{1.77 \times 10^{-5}}\textbf{ mol/L}}$}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bf%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BNi%28NH%24_%7B3%7D%24%29%24_%7B6%7D%5E%7B2%2B%7D%24%5D%7D%7D%7B%5Ctext%7B%5BNi%24%5E%7B2%2B%7D%24%5D%7D%5Ctext%7B%5BNH%24_%7B3%7D%24%5D%7D%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5C%5C%5C%5C%5Cdfrac%7B6.106%20%5Ctimes%2010%5E%7B-3%7D%7D%7Bx%5Ctimes%200.1095%5E%7B6%7D%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5C%5C%5C%5C6.106%20%5Ctimes%2010%5E%7B-3%7D%20%3D%202.0%20%5Ctimes%2010%5E%7B8%7D%5Ctimes%200.1095%5E%7B6%7Dx%3D%20345.1x%5C%5Cx%3D%20%5Cdfrac%7B6.106%20%5Ctimes%2010%5E%7B-3%7D%7D%7B345.1%7D%20%3D%201.77%20%5Ctimes%2010%5E%7B-5%7D%5C%5C%5C%5C%5Ctext%7BThe%20concentration%20of%20Ni%24%5E%7B2%2B%7D%24%20at%20equilibrium%20is%20%24%5Clarge%20%5Cboxed%7B%5Cmathbf%7B1.77%20%5Ctimes%2010%5E%7B-5%7D%7D%5Ctextbf%7B%20mol%2FL%7D%7D%24%7D)