1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rashid [163]
2 years ago
11

Calculate (a) how long it took King Kong to fall straight down from the top of the Empire State Building (380 m high). **** (use

the data from above)
a 0.00 s
b 3.94 s
c 8.80 s
d 846 s
Physics
1 answer:
Shtirlitz [24]2 years ago
3 0

Answer:

c 8.80 s

Explanation:

Given parameters:

Height of Empire State Building  = 380m

Unknown:

Time taken for King Kong to fall  = ?

Solution:

To solve this problem, we use one of the kinematics equation.

The appropriate one is given below;

      H  = ut + \frac{1}{2} g t²  

H is the height

t is the time taken

g is the acceleration due to gravity

            380  = (0 x t) + ( \frac{1}{2}  x 9.8 x t²)

           380  = 4.9t²  

             t²  = 77.55

              t = 8.8s

You might be interested in
A 3.00-kg object undergoes an acceleration given by a = (2.00 i + 5.00 j) m/s^2. Find (a) the resultant force acting on the obje
kobusy [5.1K]

Answer:

(a): The resultant force acting on the object are F= (5.99 i + 14.98 j).

(b): The magnitude of the resultant force are F= 16.4 N < 68.19º .

Explanation:

m= 3kg

a= 2 i + 5 j = 5 .38 < 68.19 º

F= m * a

F= 3* ( 5.38 < 68.19º )

F= 16.4 N < 68.19º

Fx= F * cos(68.19º)

Fx= 5.99

Fy= F* sin(68.19º)

Fy= 14.98

3 0
3 years ago
The rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3 × 10-11 e-250/T and 2
Vlada [557]

Answer:

Calculate the ratio of the rates of ozone destruction by these catalysts at 20 km, given that at this altitude the average concentration of OH is about 100 times that of Cl and that the temperature is about -50 °C

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x10^{-11} e^{-255/T}  and 2x10^{-12} e^{-940/T}  

T = -50 °C = 223 K

The reaction rate will be given by [Cl] [O3] 3x10^{-11} e^{-255/223} = 9.78^{-12} [Cl] [O3]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x10^{-12} e^{-940/223} = 2.95^{-14} [OH] [O3]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 330 * [Cl] / [OH]

Than, the concentration of OH is approximately 100 times of Cl, and the result will be that the reaction with Cl is 3.3 times faster than the  reaction with OH

Calculate the rate constant for ozone destruction by chlorine under conditions in the Antarctic ozone hole, when the temperature is about -80 °C and the concentration of atomic chlorine increases by a factor of one hundred to about 4 × 105 molecules cm-3

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x10^{-11} e^{-255/T}  and 2x10^{-12} e^{-940/T}  

T = -80 °C = 193 K

The reaction rate will be given by [Cl] [O3] 3x10^{-11} e^{-255/193} = 8.21^{-12} [Cl] [O3]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x10^{-12} e^{-940/193} = 1.53^{-14} [OH] [O3]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 535 * [Cl] / [OH]

Than, considering the concentration of Cl increases by a factor of 100 to about 4 × 10^{5} molecules cm^{-3}, the result will be that the reaction with OH will be 535 + (100 to about 4 × 10^{5} molecules cm^{-3}) times faster than the  reaction with Cl

Explanation:

4 0
3 years ago
A police car is driving down the street with it's siren on. You are standing still on the sidewalk beside the street. If the fre
AleksandrR [38]

Answer:

A) 1568.60 Hz

B) 1437.15 Hz

Explanation:

This change is frequency happens due to doppler effect

The Doppler effect is the change in frequency of a wave in relation to an observer who is moving relative to the wave source

f_(observed)=\frac{(c+-V_r)}{(C+-V_s)} *f_(emmited)\\

where

C = the propagation speed of waves in the medium;

Vr= is the speed of the receiver relative to the medium,(added to C, if the receiver is moving towards the source, subtracted if the receiver is moving away from the source;

Vs= the speed of the source relative to the medium, added to C, if the source is moving away from the receiver, subtracted if the source is moving towards the receiver.

A) Here the Source is moving towards the receiver(C-Vs)

and the receiver is standing still (Vr=0) therefore the observed frequency should get higher

f_(observed)=\frac{C}{C-V_s} *f_(emmited)\\=\frac{343}{343-15}*1500\\ =1568.60 Hz

B)Here the Source is moving away the receiver(C+Vs)

and the receiver is still not moving (Vr=0) therefore the observed frequency should be lesser

f_(observed)=\frac{C}{C+V_s} *f_(emmited)\\=\frac{343}{343+15}*1500\\ =1437.15 Hz

3 0
3 years ago
You throw a bouncy rubber ball and a wet lump of clay, both of mass m, at a wall. Both strike the wall at speed v, but while the
lana [24]

Answer:

<em>The fifth option is the correct answer: mv; 2 mv</em>

Explanation:

<u>Change of Momentum</u>

Assume an object has a momentum p1 and after some interaction it now has a momentum p2, the change of momentum is

\Delta p=p_2-p_1

The momentum is computed as

p=mv

Where m is the mass of the object and v its speed. Now let's analyze the situation of both the ball and the clay.

The clay has an initial speed v and a mass m, thus its initial momentum is

p_1=mv

When it hits the wall, it sticks, thus its final speed is 0 and

p_2=0

The change of momentum is

\Delta p=0-mv=-mv

The absolute change is mv

Now for the ball, the initial condition is the same as it was for the clay, but the ball hits back at the same speed, thus its final momentum is

p_2=-mv

The change of momentum is

\Delta p=-mv-mv=-2mv

The absolute change is 2mv

The fifth option is the correct answer: mv; 2 mv

3 0
3 years ago
Comparison between copper properties and aluminium properties​
mixas84 [53]
Hopes this helps:

Answer: Aluminum has 61 percent of the conductivity of copper, but has only 30 percent of the weight of copper. That means that a bare wire of aluminum weights half as much as a bare wire of copper that has the same electrical resistance. Aluminum is generally more inexpensive when compared to copper conductors.
5 0
2 years ago
Other questions:
  • What 2 aspects of a force do scientists measure???
    8·2 answers
  • 1. acceleration → rate of change in velocity, which is the change in velocity divided by the change in time True False
    11·1 answer
  • A tug-of-war game is played by five c/hildren: three on one team and two on the other. How much force will the two child team ha
    5·1 answer
  • The projectile partially fills the end of the 0.3 m pipe. Calculate the force required to hold the projectile in position when t
    5·1 answer
  • Rest and motion are relative terms. write in brief​
    5·1 answer
  • The speed of propagation of electrical signals in a nerve cell depends on the diameter of the axon (nerve fiber). If the nerve c
    7·1 answer
  • HURYY PLEASE
    12·2 answers
  • True or False: Any wavelength of light would work for this experiment. Explain your response, including the term quantum or quan
    8·1 answer
  • A SMART car can accelerate from rest to a speed of 28 m/s in 20s. What distance does it travel in this time?
    8·1 answer
  • A cylindrical tube 12.5 cm high and 1.5 cm in diameter is used to collect blood samples. how many cubic decimeters (dm3) of bloo
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!