The correct answer from the choices given is the last option. The can from the <span> car will lose the carbon more quickly because there are fewer solute–solvent collisions. The can in the car has a lower temperature than the one in the refrigerator. At low temperature, the solubility of carbon dioxide in the liquid decrease therefore particles would tend to be in the vapor phase and escape from the liquid.</span>
The balanced chemical reaction is:
<span>2 I2 + KIO3 + 6 HCl ---------> 5 ICl + KCl + 3 H2O
</span>
We are given the amount of the product to be produced from the reaction. This will be the starting point of our calculations.
28.6 g ICl (1 mol / 162.35 g ICl ) ( 2 mol I2 / 5 mol ICl ) ( 253.81 g I2 / 1 mol I2 ) = 17.88 g I2
Zn(s) + 2HCl(aq) = ZnCl₂(aq) + H₂(g)
zinc + hydrochloric acid = zinc chloride + hydrogen
Answer:
Thermal energy is transferred between particles that are in direct contact with each other.
Thermal energy is transferred between objects of different temperatures.
Thermal energy is transferred from fast-moving particles to slow-moving particles.
Explanation: