Answer:
X = 2146.05 m
Explanation:
We need to understand first what is the value we need to calculate here. In this case, we want to know how far from the starting point the package should be released. This is the distance.
We also know that the plane is flying a certain height with an specific speed. And the distance we need to calculate is the distance in X with the following expression:
X = Vt (1)
However we do not know the time that this distance is covered. This time can be determined because we know the height of the plain. This time is referred to the time of flight. And the time of flight can be calculated with the following expression:
t = √2h/g (2)
Where g is gravity acceleration which is 9.8 m/s². Replacing the data into the expression we have:
t = √(2*2500)/9.8
t = 22.59 s
Now replacing into (1) we have:
X = 95 * 22.59
<h2>
X = 2146.05 m</h2>
This is the distance where the package should be released.
Hope this helps
There will not be enough momentum from the first hill to cross another hill if he same or larger size because of the way potential energy and kinetic energy works it will not be able go as high as it could go on he fist hill.
Work=Force*Distance so distance must be .82 meters
Answer:
The ratio of electric field is 16:9.
Explanation:
Given that,
Radius 
Charge = Q
We know that,
The electric field is directly proportional to the charge and inversely proportional to the square of the distance.
In mathematically term,

Here, 
We need to calculate the ratio of electric field
Using formula of electric field

Put the value into the formula

Hence, The ratio of electric field is 16:9.
The First Law states, "A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force." This simply means that things cannot start, stop or change direction all by themselves. It requires some force acting on them from the outside to cause such a change. Hope this helps! Mark brainly please!