<h3>Question 1</h3>
Answer
option C) velocity
Explanation
acceleration = Δv ÷ Δt
<h3>Question 2</h3>
Answer
option C) m/s²
Explanation
Δv ÷ Δt
= m/s ÷ s
= m/s x 1/s
= m/s²
<h3>Question 3</h3>
Answer
option B) velocity has both direction and speed.
That is why velocity can be negative but speed can not and velocity is rate of change of displacement where as speed is rate of change of distance.
Density: g/mL, kg/cubic meter
Volume: L, teaspoon
Mass: g, MeV/sq. C
The cluster that is most likely to be located in the halo of our galaxy is the diagram that shows main-sequence stars of every spectral type except O, along with a few giants and supergiants.
<h3>What are star clusters?</h3>
Star clusters are large collections of stars. Star clusters are classified into two types: Globular clusters are gravitationally bound groups of tens of thousands to millions of old stars.
Because of their location on the dusty spiral arms of spiral galaxies, they are sometimes referred to as galactic clusters. Stars in an open cluster share a common ancestor as they all formed from the same massive molecular cloud.
A typical spiral galaxy has a faint, extended stellar halo. A stellar halo is an essentially spherical population of stars and globular clusters thought to surround most disk galaxies and the cD class of elliptical galaxies. It should be noted that a halo is a spherical cloud of stars surrounding a galaxy. Astronomers have proposed that the Milky Way's halo is composed of two populations of stars.
Learn more about star on:
brainly.com/question/21379923
#SPJ1
Answer: the theory that all matter is made up of tiny indivisible particles (atoms). According to the modern version, the atoms of each element are effectively identical, but differ from those of other elements, and unite to form compounds in fixed proportions.
Answer: D
All the particles must be uncharged
Explanation:
If all the particles are positively charged, then there will be force of repulsion between them which will give different directions away from each other. The same is applicable if they are all negatively charged.
If the particles are positively and negatively charged, their will be force of attraction between them which will give different directions towards each other.
For all to be experiencing forces in the same direction, We can conclude that
All the particles must be uncharged.