Two identical balls collide<span> head on. The </span>initial velocity<span> of </span>one<span> is 0.75 </span>m/s<span> east, while that of the </span>other one<span> is 0.43 </span>m/s west<span>.</span>
Each energy sublevel corresponds to an orbital of a different shape.
Explanation:
Two sublevels of the same principal energy level differs from each other if the sublevels corrresponds to an orbital of a different shape.
- The principal quantum number of an atom represents the main energy level in which the orbital is located or the distance of an orbital from the nucleus. It takes values of n = 1,2,3,4 et.c
- The secondary quantum number gives the shape of the orbitals in subshells accommodating electrons.
- The number of possible shapes is limited by the principal quantum numbers.
Take for example, Carbon:
1s² 2s² 2p²
The second energy level is 2 but with two different sublevels of s and p. They have different shapes. S is spherical and P is dumb-bell shaped .
Learn more:
Quantum number brainly.com/question/9288609
#learnwithBrainly
Answer:
The maximum speed will be 26.475 m/sec
Explanation:
We have given mass of the toy m = 0.50 kg
radius of the light string r = 1 m
Tension on the string T = 350 N
We have to find the maximum speed without breaking the string
For without breaking the string tension must be equal to the centripetal force
So 
So 

v = 26.475 m /sec
So the maximum speed will be 26.475 m/sec
In both magnitude and direction since acceleration is a vector quantity