Answer:
i = 0.00077A
Explanation:
Given:
loop radius, r = 3.0 cm = 0.03 m
Area, A = π x r² = π x 0.03² = 0.0028 m²
Magnetic Field, B = 0.75 T
Loop resistance, R = 18 Ω
time, t = 0.15 seconds
Now,
the induced emf is given as:
EMF = - BA/t .......1
Likewise,
EMF = iR.......2
Equate 1 and 2
iR = - BA/t
i = - BA/tR
i = 0.75×0.0028/0.15×18
i = 0.0021/2.7
i = 0.00077A
Answer:
8 J and 2 J
Explanation:
Given that,
Mass of the rubber ball, m = 1 kg
Initial speed of the rubber ball, u = 4 m/s (in east)
Final speed of the rubber ball, v = -2 m/s (in west)
We need to find the kinetic energy of the ball before it hits the wall, the kinetic energy of the ball after it bounces off the wall.
Initial kinetic energy,

Final kinetic energy,

So, the initial kinetic energy is 8 J and the final kinetic energy is 2 J.
Answer:
Speed of sound inside metal is ≅ 8200 
Explanation:
Given :
Length of metal bar
m
From general velocity equation,

Where
speed of sound in air = 343 
For finding time from above equation,


sec
Since pulses are separated by
sec
So we take time difference,

So speed of sound in metal is,



The british won the Battle of Barren Hill :)