Answer:
F= 4788 N
Explanation:
Because the car moves with uniformly accelerated movement we apply the following formula:
vf²=v₀²+2*a*d Formula (1)
Where:
d:displacement in meters (m)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
d=36.9 m
v₀=14.0 m/s m/s
vf= 0
Calculating of the acceleration of the car
We replace dta in the formula (1)
vf²=v₀²+2*a*d
(0)²=(14)²+2*a*(36.9)
-(14)²= (73.8) *a
a= - (196) / (73.8)
a= - 2.66 m/s²
Newton's second law of the car in direction horizontal (x):
∑Fx = m*ax Formula (2)
∑F : algebraic sum of the forces in direction x-axis (N)
m : mass (kg)
a : acceleration (m/s²)
Data
m=1800 Fkg
a= - 2.66 m/s²
Magnitude of the horizontal net force (F) that is required to bring the car to a halt in a distance of 36.9 m :
We replace data in the formula (2)
-F= (1800 kg) * ( -2.66 m/s²
)
F= 4788 N
Answer:
whichever teacher gave you this question is a legend
Explanation:
I’m not sure if its correct but I think it’s focal Ray point
For concave mirrors, some generalizations can be made to simplify ray construction. They are: An incident ray traveling parallel to the principal axis will reflect and pass through the focal point. An incident ray traveling through the focal point will reflect and travel parallel to the principal axis.
the answer is true because evaporates can provide an ideal speed racing surface