One of the methods that are used to separate polymers, aluminium alloys, and steels from one another is the Gravitation Separation method.
One straightforward technique is to run the mixture through a magnet, which will keep the steel particles on the magnet and separate them from the polymer.
What is the Gravitation Separation method?
When it is practicable to separate two components using gravity, i.e., when the combination's constituent parts have different specific weights, gravity separation is a technique used in industry. The components can be in suspension or in a dry granular mixture.
Polymers, Steel and Aluminium alloys can be readily split apart. The technique depends on how the two components are combined. The approach used is gravitational density. Due to the significant difference in relative specific mass values between steel and polymers (which range from 1.0 to 1.5), it is possible to separate them using flotation in a liquid that is safe and has the right density.
Therefore, the Gravitation Separation method is used to separate polymers, aluminium alloys and steels.
To learn more about the Polymer from the given link
brainly.com/question/2494725
#SPJ4
Given:
mass of water, m = 2000 kg
temperature, T =
= 303 K
extacted mass of water = 100 kg
Atmospheric pressure, P = 101.325 kPa
Solution:
a) Using Ideal gas equation:
PV = m
T (1)
where,
V = volume
m = mass of water
P = atmospheric pressure

R= Rydberg's constant = 8.314 KJ/K
M = molar mass of water = 18 g/ mol
Now, using eqn (1):



Therefore, the volume of the tank is 
b) After extracting 100 kg of water, amount of water left, m' = m - 100
m' = 2000 - 100 = 1900 kg
The remaining water reaches thermal equilibrium with surrounding temperature at T' =
= 303 K
At equilibrium, volume remain same
So,
P'V = m'
T'
Therefore, the final pressure is P' = 96.258 kPa
correct me if i’m wrong i’m pretty sure it’s B i’ve had the same question