PbO
Not sure how to show crisscross method
Make sure adding the charges together=0 and multiply the elements when necessary to balance charge
Answer:
ACTIVATION OF PHOSPHORYLASE KINASE AND ALLOSTERICALLY ACTIVATION OF PHOSPHORYLASE KINASE B
Explanation:
In a contracting skeletal muscle, there is a rapid need of ATP by the muscle cell. The energy need is obtained by the degradation of glycogen into glucose which then enters glycolysis. Muscle contraction causes muscle depolarization in which there is the rapid influx of calcium ions from the sarcoplasmic reticulum into the sacroplasm of the myocytes. This in turn causes the binding of calcium ion with calmodulin which thenb activates phosphorylase kinase from which it allosterically activate the b form of the enzyme needed for the conversion of glycogen to glucose. The other options do not occur as a result of increase in cytolic calcium concentration.
Answer #1 is "there is 2.5 grams of solute in every 100 g of solution."
We calculate for 2.5% by mass solution by dividing the mass of the solute by the mass of the solution and then multiply by 100.
Answer #2 is "that mass ratio would be 2.5/100 or 2.5 grams of solute/100 grams of solution."
We weigh out 2.5 grams of solute and then add 97.5 grams of solvent to make a total of 100 gram solution, that is,
mass of solute / mass of solution = 2.5g solute / (2.5g solute + 97.5g solvent)
= 2.5g solute / 100g solution
Answer#3 is "a solution mass of 1 kg is 10 times greater than 100 g, thus one kilogram (1 kg) of a 2.5% ki solution would contain 25 grams of ki."
We multiply 10 to each mass so that 100 grams becomes 1000grams since 1000 grams is equal to 1 kg:
mass of solute / mass of solution = 2.5g*10/[(2.5g*10) + (97.5g*10)]
= 25g solute/(25g solute + 975g solvent)
= 25g solute/1000g solution
= 25g solute/1kg solution
Answer: A. The free-moving electrons transmit heat quickly.
Explanation: