Answer:
Explanation:
We shall represent the velocity of cruise ship and coast guard petrol boat in vector form .
velocity of cruise ship
Vcs = - 2.5 j
Vpb = - 4.8 cos 19 i + 4.8 sin 19 j = - 4.54 i + 1.56 j
velocity of the cruise ship relative to the patrol boat
= Vcs - Vpb
= - 2.5 j - ( - 4.54 i + 1.56 j )
= - 2.5 j + 4.54 i - 1.56 j
= 2.04 i - 1.56 j .
x-component of the velocity of the cruise ship relative to the patrol boat
= 2.04 m /s
y-component of the velocity of the cruise ship relative to the patrol boat
= - 1.56 m /s .
Answer:
The value of the spring constant of this spring is 1000 N/m
Explanation:
Given;
equilibrium length of the spring, L = 10.0 cm
new length of the spring, L₀ = 14 cm
applied force on the spring, F = 40 N
extension of the spring due to applied force, e = L₀ - L = 14 cm - 10 cm = 4 cm
From Hook's law
Force applied to a spring is directly proportional to the extension produced, provided the elastic limit is not exceeded.
F ∝ e
F = ke
where;
k is the spring constant
k = F / e
k = 40 / 0.04
k = 1000 N/m
Therefore, the value of the spring constant of this spring is 1000 N/m
Answer:
Its not A..
Explanation:
I chose A - was incorrect
Answer:
1.28
Explanation:
If you want to find the m/s you would divide distance by time, so
45 divided by 35 would equal 1.28571429 and so on.
you can just write the three first numbers.
Live Stock because in 2010 live stock used 10,000 millions gallons of water per day but everything else was higher and irrigation is the highest with 115,000 million gallons per day.