The answer is C. an electron in an orbit has a fixed energy.
Given
initial position = Xi= 19.9m
Final position Xf = 5.4m
Average velocity= Va = -0.418m/s
it shows displacement is reverse.
To find t=?
As Va = (Xf- Xi) / t
t = (Xf-Xi) / ( Va)
t = ( 5.4-19.9) / (-0.418)
t = (-14.5 ) / (-0.418) (-ve sign cancel out at numerator and denominator)
t =34.69 s
Answer:
27%
Explanation:
15.999 divided by 58.32 = .27433128
Move the decimal place over 2 places.
27%
Answer:
The time taken by the satellite to orbit earth at its surface, t = 1.66 hr
Explanation:
Given data,
The velocity of the satellite, v = 15000 miles/hr
The distance of travel, d = 24901 miles,
It is equal to the circumference of earth,
So the time taken by the satellite to orbit earth at its surface,
v = d/t
t = d/v
Substituting the given values in the above equation,
t = 24901 / 15000
= 1.66 hr
Hence, the time taken by the satellite to orbit earth at its surface, t = 1.66 hr
Answer:
h=17357.9m
Explanation:
The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.
To calculate this, you need to use the barometric formula:

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.
Furthermore, the specific gas constant is defined by:

Therefore yo can write the barometric formula as:

at the surface of the planet (h =0) the pressure is ![P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}](https://tex.z-dn.net/?f=P_0%5B%5Ctex%5D.%20The%20pressure%20at%20the%20height%20requested%20is%20half%20of%20that%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%3D%5Cfrac%7BP_0%7D%7B2%7D)
applying to the previuos equation:

solving for h:
h=17357.9m