In order to answer these questions, we need to know the charges on
the electron and proton, and then we need to know the electron's mass.
I'm beginning to get the creepy feeling that, in return for the generous
5 points, you also want me to go and look these up so I can use them
in calculations ... go and collect my own straw to make the bricks with,
as it were.
Ok, Rameses:
Elementary charge . . . . . 1.6 x 10⁻¹⁹ coulomb
negative on the electron
plussitive on the proton
Electron rest-mass . . . . . 9.11 x 10⁻³¹ kg
a). The force between two charges is
F = (9 x 10⁹) Q₁ Q₂ / R²
= (9 x 10⁹ m/farad) (-1.6 x 10⁻¹⁹C) (1.6 x 10⁻¹⁹C) / (5.35 x 10⁻¹¹m)²
= ( -2.304 x 10⁻²⁸) / (5.35 x 10⁻¹¹)²
= 8.05 x 10⁻⁸ Newton .
b). Centripetal acceleration =
v² / r .
A = (2.03 x 10⁶)² / (5.35 x 10⁻¹¹)
= 7.7 x 10²² m/s² .
That's an enormous acceleration ... about 7.85 x 10²¹ G's !
More than enough to cause the poor electron to lose its lunch.
It would be so easy to check this work of mine ...
First I calculated the force, then I calculated the centripetal acceleration.
I didn't use either answer to find the other one, and I didn't use " F = MA "
either.
I could just take the ' F ' that I found, and the 'A' that I found, and the
electron mass that I looked up, and mash the numbers together to see
whether F = M A .
I'm going to leave that step for you. Good luck !
<span> gravitational force varies based on 1/r^2
when you're double the distance =10,000 to 20,000, the force is 4 times smaller so on and so forth.
</span><span>As force is proportional to 1 / {distance squared}, the force will be 1 / 2^2 (i.e. 1/4) of the force at the reference distance (i.e. 1/4 * 600 = 150 lb)
</span>hope this helps
Answer:
U = 56877.4 J
Explanation:
The potential energy of a body is that which it possesses because it is located at a certain height above the surface of the earth and can be calculated using the following formula:
U = mgh Formula (1)
Where:
U is the potential energy in Joules (J)
m is the mass of the body in kilograms (kg)
g is the acceleration due to gravity (m/s²)
h is the height at which the body is found from the surface of the earth in meters (m)
Data
m= 81.4 kg
g= 9.8 m/s²
h = 71.3 m
Potential energy of Sean and the parachute at the top of the tower
We replace data in the formula (1)
U = m*g*h
U = (81.4 kg)*(9.8 m/s²)*(71.3 m)
U = 56877.4 N*m
U = 56877.4 J
The answer is A
Explanation: the conservation of matter means that the mass stays the same
The change in the state of matter causes change in the motion of the particles of the matter. The gaseous state of matter has the greatest speed while the solid state has the least speed.
The change in state of every matter is accompanied by lost or gained of energy.
Example is water.
The solid state of water is ice. The motion of particles of the water is relatively zero because the molecules are held at a fixed position.
The liquid state of water occurs when the temperature of the ice is increased above zero degree Celsius. The speed of the particles of water in liquid state is greater than solid state.
The gaseous state of water occurs when the temperature of the liquid water is increased beyond 100 degree Celsius. The speed of water in gaseous state is greater than liquid state.
Learn more about different state of matter here: brainly.com/question/9402776