Answer:
(a) convex mirror
(b) virtual and magnified
(c) 23.3 cm
Explanation:
The having mirror is convex mirror.
distance of object, u = - 20 cm
magnification, m = 1.4
(a) As the image is magnified and virtual , so the mirror is convex in nature.
(b) The image is virtual and magnified.
(c) Let the distance of image is v.
Use the formula of magnification.

Use the mirror equation, let the focal length is f.

Radius of curvature, R = 2 f = 2 x 11.67 = 23.3 cm
We have that the Number of stitches per sec and he mass of oscillation motion is mathematically given as
a) Nt=25stitches per sec
b) m=2.033e-5kg
<h3>
Number of
stitches per sec and he mass of oscillation motion</h3>
Question Parameters:
This <u>sewing </u>machine is capable of stitching 1,500 stiches in one minute.
If the <em>sewing </em>machine has a spring constant of 0.5 N/m,
Generally the equation for the Number of stitches per sec is mathematically given as
Nt=N/t
Therefore
Nt=1500/60
Nt=25stitches per sec
b)
Generally the equation for the Time t is mathematically given as

Therefore

m=2.033e-5kg
For more information on Mass visit
brainly.com/question/15959704
Speed is a description of how fast an object moves; velocity is how fast and in what direction it moves. In physics, velocity is speed in a given direction. When we say a car travels at 60 km/h, we are specifying its speed.
Answer:
Container A and C
Explanation:
ideal gas equation gives P=nRT/V
so at constant Temperature and pressure, P=n/T
Container A and C after dividing number of moles and Volume, are found to be the same=0.0446
Answer:
<em>Force of gravity may not affect a pendulum during its equilibrium state</em>. But the gravity can affect the pendulum when a force occurs in any direction of the bob connected to the cord that makes a swing sideways. The gravity of pendulum never stops, it always accelerates. So the gravity affects the pendulum acceleration and speed.
<em>Similarly the tension in the cord will not affect the pendulum</em><em> </em>but if change in the length of the pendulum while keeping other factors constant changes the length of the period of pendulum. longer pendulum swings with lower frequency than shorter pendulums.