Answer:
-6.326 KJ/K
Explanation:
A) the entropy change is defined as:

In an isobaric process heat (Q) is defined as:

Replacing in the equation for entropy
m is the mass and Cp is the specific heat of R134a. We can considerer these values as constants so the expression for entropy would be:
Solving the integral we get the expression to estimate the entropy change in the system

The mass is 5.25 Kg and Cp for R134a vapor can be consulted in tables, this value is 
We can get the temperature at the beginning knowing that is saturated vapor at 500 KPa. Consulting the thermodynamic tables, we get that temperature of saturation at this pressure is: 288.86 K
The temperature in the final state we can get it from the heat expression, since we know how much heat was lost in the process (-976.71 kJ). By convention when heat is released by the system a negative sign is used to express it.

With
clearing for T2 we get:

Now we can estimate the entropy change in the system

The entropy change in the system is negative because we are going from a state with a lot of disorder (high temperature) to one more organize (less temperature. This was done increasing the entropy of the surroundings.
b) see picture.
Answer: A capacitor connected across the output allows the AC signal to pass through it and blocks the DC signal, thus acting as a high pass filter. The output across the capacitor is thus an unregulated filtered DC signal. This output can be used to drive electrical components like relays, motors, etc.
Explanation:
Answer:
5984.67N
Explanation:
A 14 inch diameter pipe is decreased in diameter by 2 inches through a contraction. The pressure entering the contraction is 28 psi and a pressure drop of 2 psi occurs through the contraction if the upstream velocity is 4.0 ft/sec. What is the magnitude of the resultant force (lbs) needed to hold the pipe in place?
from continuity equation
v1A1=v2A2
equation of continuity
v1=4ft /s=1.21m/s
d1=14 inch=.35m
d2=14-2=0.304m
A1=pi*d^2/4
0.096m^2
a2=0.0706m^2
from continuity once again
1.21*0.096=v2(0.07)
v2=1.65
force on the pipe
(p1A1- p2A2) + m(v2 – v1)
from bernoulli
p1 + ρv1^2/2 = p2 + ρv2^2/2
difference in pressure or pressure drop
p1-p2=2psi
13.789N/m^2=rho(1.65^2-1.21^2)/2
rho=21.91kg/m^3
since the pipe is cylindrical
pressure is egh
13.789=21.91*9.81*h
length of the pipe is
0.064m
AH=volume of the pipe(area *h)
the mass =rho*A*H
0.064*0.07*21.91
m=0.098kg
(193053*0.096- 179263.6* 0.07) + 0.098(1.65 – 1.21)
force =5984.67N
Answer:
(C) ln [Bi]
Explanation:
Radioactive materials will usually decay based on their specific half lives. In radioactivity, the plot of the natural logarithm of the original radioactive material against time will give a straight-line curve. This is mostly used to estimate the decay constant that is equivalent to the negative of the slope. Thus, the answer is option C.
Answer:
A good design for a portable device to mix paint minimizing the shaking forces and vibrations while still effectively mixing the paint. Is:
The best design is one with centripetal movement. Instead of vertical or horizontal movement. With a container and system of holding structures made of materials that could absorb the vibration effectively.
Explanation:
First of all centripetal movement would be friendlier to our objective as it would not shake the can or the machine itself with disruptive vibrations. Also, we would have to use materials with a good grade of force absorption to eradicate the transmission of the movement to the rest of the structure. Allowing the reduction of the shaking forces while maintaining it effective in the process of mixing.