To find them you would have numbers of the elements in percentage or grams then you divide them by their molar mass to get their moles. From there you divide by the smallest number. Round it to two or one sig fig. If you have a number that is for ex. 2.5 you multiply it by 2 to make it whole as well the other whole numbers. Then to find the molecular formula the problem must give you another molar mass and using your empirical formula convert it to its molar mass then you divide them, larger number over smaller number. You should get a number round it to 1 sig fig. Now you use that number and multiply the subscripts on the empirical formula to get the molecular formula.
Answer:0.026ml
Explanation:
Details are found in the image attached. We must subtract the saturated vapour pressure of hydrogen gas at the given temperature from the total pressure of the hydrogen gas collected over water to obtain the actual pressure of hydrogen gas and substitute the value obtained into the general gas equation. The dry hydrogen gas has no saturated vapour pressure hence the value is substituted as given. All temperatures must be converted to Kelvin before substitution.
Answer C is for kg and but it's .00134 for grams
Answer: 0.050M urea, 0.10M glucose, 0.2M sucrose, pure water
Explanation:
Vapor pressure refers to the ease with which a liquid substance is transformed into vapour. High vapour density implies that the liquid is easily transformed into gas. Pure water is expected to have the lowest vapour density since it is held by strong intermolecular forces in the liquid state. Urea is an organic liquid held by weak Van der Waals forces hence its extremely high vapor pressure.
Yes we would be able to live in cold climates.