Make a quick chart with each element represented, and count them up. HINT - leave the polyatomic anions together - in this case, PO4
Left Right
1 Ca 3
2 O 1
5 H 2
1 PO4 2
Begin by balancing like finding common denominators of fractions - apply to both sides:
I started by adding a 2 in front of H3PO4 on the left, them 6 in front of H2O on the right. Last, a 3 in front of Ca (OH)2. Then, re-count using the chart format to make sure you're right.
3Ca(OH)2 + 2H3PO4 = Ca3(PO4)2 + 6H2O
The liquid that is been dispensed during titration as regards this question is Titrant.
- Titration can be regarded as common laboratory method that is been carried out during quantitative chemical analysis.
- This analysis helps to know the concentration of an identified analyte.
- Burette can be regarded as laboratory apparatus.
It is used in the in measurements of variable amounts of liquid ,this apparatus helps in dispensation of liquid, especially when performing titration.
- The specifications is been done base on their volume, or resolution.
- The liquid that comes out of this apparatus is regarded as Titrant, and this is gotten during titration process, which is usually carried out during volumetric analysis.
Therefore, burrete is used in volumetric analysis.
Learn more at:
brainly.com/question/2728613?referrer=searchResults
Answer:
3 moles of CaO
Explanation:
The chemical balanced equation is;
2Ca + O₂ → 2CaO
The ratio of calcium(Ca) to Calcium Oxide(Cao) in this equation is 2:2.
Now, when 3 moles of calcium react with oxygen, Cao produced will be;
3 moles of O₂ × 2 moles of CaO/2 moles of Cao = 3 moles of CaO
Answer:
Activation energy of phenylalanine-proline peptide is 66 kJ/mol.
Explanation:
According to Arrhenius equation-
, where k is rate constant, A is pre-exponential factor,
is activation energy, R is gas constant and T is temperature in kelvin scale.
As A is identical for both peptide therefore-
![\frac{k_{ala-pro}}{k_{phe-pro}}=e^\frac{[E_{a}^{phe-pro}-E_{a}^{ala-pro}]}{RT}](https://tex.z-dn.net/?f=%5Cfrac%7Bk_%7Bala-pro%7D%7D%7Bk_%7Bphe-pro%7D%7D%3De%5E%5Cfrac%7B%5BE_%7Ba%7D%5E%7Bphe-pro%7D-E_%7Ba%7D%5E%7Bala-pro%7D%5D%7D%7BRT%7D)
Here
, T = 298 K , R = 8.314 J/(mol.K) and 
So, ![\frac{0.05}{0.005}=e^{\frac{[E_{a}^{phe-pro}-(60000J/mol)]}{8.314J.mol^{-1}.K^{-1}\times 298K}}](https://tex.z-dn.net/?f=%5Cfrac%7B0.05%7D%7B0.005%7D%3De%5E%7B%5Cfrac%7B%5BE_%7Ba%7D%5E%7Bphe-pro%7D-%2860000J%2Fmol%29%5D%7D%7B8.314J.mol%5E%7B-1%7D.K%5E%7B-1%7D%5Ctimes%20298K%7D%7D)
(rounded off to two significant digit)
So, activation energy of phenylalanine-proline peptide is 66 kJ/mol