Given :
Number of molecules of hydrogen peroxide, N = 4.5 × 10²².
To Find :
The mass of given molecules of hydrogen peroxide.
Solution :
We know, 1 mole of every compound contains Nₐ = 6.022 × 10²³ molecules.
So, number of moles of hydrogen peroxide is :

Now, mass of hydrogen peroxide is given as :
m = n × M.M
m = 0.0747 × 34 grams
m = 2.54 grams
Hence, this is the required solution.
Given:
175 kilograms of Methane (CH4) to be synthesized into Hydrogen Cyanide (HCN)
The balanced chemical equation is shown below:
2 CH4<span> + 2 NH</span>3<span> + 3 O</span>2<span> → 2 HCN + 6 H</span>2<span>O
</span>
To calculate for the masses of ammonia and oxygen needed, our basis will be 175 kg CH4.
Molar mass:
CH4 = 16 kg/kmol
NH3 = 17 kg/kmol
O2 = 32 kg/kmol
mass of NH3 = 175 kg CH4 / 16 kg/kmol * (2/2) * 17 kg/kmol
mass of NH3 = 185.94 kg NH3 needed
mass of O2 = 175 kg CH4 / 16 kg/kmol * (3/2) * 32 kg/kmol
mass of O2 = 525 kg
mass of O = 525 kg / 32 kg/kmol * (1/2) * 16 kg/kmol
mass of O = 131.25 kg O
Answer:
Option A is definitely the correct answer.
Explanation:
from my analysis
( Just fill those words into each dash or empty space accordingly as you saw it )
Good luck
Answer:
The correct answer is "Fragment B likely has a higher Guanosine/Citosine content".
Explanation:
Guanosine/Citosine content, or GC content, refers to how many molecules of guanosine and citosine have a DNA fragment, respect to the content of adenine and thymine. The higher the GC content, the higher the temperature needed to denature the fragment of DNA. This happens because guanosine and citosine establish three hydrogen bonds, while adenine and thymine establish two hydrogen bonds when they bind together. Therefore, if fragment A and B are the same length, but at 89 C only fragment A is completely denatured, fragment B likely has a higher GC content.