Answer:
What are the advantages of titration?
Titrimetric analysis commonly referred to as volumetric analysis offers distinct advantages over cumbersome gravimetric methods:
Speed of analysis.
Instantaneous completion of reactions.
Greater accuracy due to minimization of material loss involved in decanting, filtration, precipitation or similar operations.
Explanation:
Disadvantages
It is a destructive method often using up relatively large quantities of the substance being analysed.
It requires reactions to occur in a liquid phase, often the chemistry of interest will make this inappropriate.
It can produce significant amounts of chemical waste which has to be disposed of.
It has limited accuracy.
<em>hope </em><em>this </em><em>helps </em><em>Plea</em><em>se</em><em> </em><em>inform</em><em> </em><em>me</em><em> </em><em>if</em><em> </em><em>its</em><em> </em><em>help</em><em>ful</em><em> </em>
2.0 L
The key to any dilution calculation is the dilution factor
The dilution factor essentially tells you how concentrated the stock solution was compared with the diluted solution.
In your case, the dilution must take you from a concentrated hydrochloric acid solution of 18.5 M to a diluted solution of 1.5 M, so the dilution factor must be equal to
DF=18.5M1.5M=12.333
So, in order to decrease the concentration of the stock solution by a factor of 12.333, you must increase its volume by a factor of 12.333by adding water.
The volume of the stock solution needed for this dilution will be
DF=VdilutedVstock⇒Vstock=VdilutedDF
Plug in your values to find
Vstock=25.0 L12.333=2.0 L−−−−−
The answer is rounded to two sig figs, the number of significant figures you have for the concentration od the diluted solution.
So, to make 25.0 L of 1.5 M hydrochloric acid solution, take 2.0 L of 18.5 M hydrochloric acid solution and dilute it to a final volume of 25.0 L.
IMPORTANT NOTE! Do not forget that you must always add concentrated acid to water and not the other way around!
In this case, you're working with very concentrated hydrochloric acid, so it would be best to keep the stock solution and the water needed for the dilution in an ice bath before the dilution.
Also, it would be best to perform the dilution in several steps using smaller doses of stock solution. Don't forget to stir as you're adding the acid!
So, to dilute your solution, take several steps to add the concentrated acid solution to enough water to ensure that the final is as close to 25.0 L as possible. If you're still a couple of milliliters short of the target volume, finish the dilution by adding water.
Always remember
Water to concentrated acid →.NO!
Concentrated acid to water →.YES!
Answer: add 2 valence electrons
Explanation:
You have to make up for the negative electrons so you add them