Answer:
i. Keq=4157.99.
ii. More hydrogen sulfide will be produced.
Explanation:
Hello,
i. In this case, for the concentrations at equilibrium on the given chemical reaction, the equilibrium constant results:
![Keq=\frac{[H_2S]^2}{[H_2]^2[S_2]} =\frac{(0.97M)^2}{(0.051M)^2(0.087)} =4157.99](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BH_2S%5D%5E2%7D%7B%5BH_2%5D%5E2%5BS_2%5D%7D%20%3D%5Cfrac%7B%280.97M%29%5E2%7D%7B%280.051M%29%5E2%280.087%29%7D%20%3D4157.99)
ii. Now, by means of the Le Chatelier's principle, the addition of a reactant shifts the reaction towards products, it means that more hydrogen sulfide will be produced in order to reach equilibrium.
Best regards.
Electrolysis of water<span> is the </span><span>decomposition reaction, because from one molecule (water) two molecules (hydrogen and oxygen) are produced. Water is separeted into two molecules:
</span>Reaction of reduction at cathode: 2H⁺(aq) + 2e⁻<span> → H</span>₂(g<span>).
</span><span><span>Reaction of oxidation at anode: 2H</span></span>₂<span><span>O(l) → O</span></span>₂<span><span>(g) + 4H</span></span>⁺(<span><span>aq) + 4e</span></span>⁻.<span><span>
</span></span>
Answer:
magnesium + oxygen ----> magnesium oxide