Answer:
frequency = 0.47×10⁴ Hz
Explanation:
Given data:
Wavelength of wave = 6.4× 10⁴ m
Frequency of wave = ?
Solution:
Formula:
Speed of wave = wavelength × frequency
Speed of wave = 3 × 10⁸ m/s
Now we will put the values in formula.
3 × 10⁸ m/s = 6.4× 10⁴ m × frequency
frequency = 3 × 10⁸ m/s / 6.4× 10⁴ m
frequency = 0.47×10⁴ /s
s⁻¹ = Hz
frequency = 0.47×10⁴ Hz
Thus the wave with wavelength of 6.4× 10⁴ m have 0.47×10⁴ Hz frequency.
Second orbital can hold 8 electrons
Explanation:
When we add a non-volatile solute in a solvent then due to the impurity added to the solution there will occur an increase in the boiling point of the solution.
This increase in boiling point will be known as elevation in boiling point.
As one beaker contains seawater (water having NaCl) will have some impurity in it. So, more temperature is required by seawater to escape into the atmosphere.
Whereas another beaker has only pure water so it is able to easily escape into the atmosphere since, it contains no impurity.
Thus, we can conclude that level of pure water will decrease more due to non-volatile solute present in it as compared to seawater.
Answer:
Explanation:
Elements on the right side of the periodic table are very likely to form negative ions -- all of those except elements in the 8th or 18th column (depending on how your periodic table is numbered).
K and Mg are on the left side, so they will not form negative ions.
They give up 1 (for K) electron and 2 (for Mg) electrons which will leave plus charges for the ions.
On the other hand S and I are on the right side of the periodic table. They will take on electrons and hence be charged with a minus.
Total weight = 1 + 35.45 + 3 * 16 = 84.45
H = 1 / 84.45 * 100% = 1.18%
Cl = 35.45 / 84.45 * 100% = 41.98%
O = 48 / 84.45 * 100% = 56.84%