1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Agata [3.3K]
3 years ago
6

A _______ is a series of waves that come ashore at interval 10-45 mintues​

Physics
1 answer:
Nostrana [21]3 years ago
3 0

Answer:

tsunami

Explanation:

A tsunami is a series of waves that come ashore at interval 10-45 mintues

You might be interested in
QUESTION 1
Molodets [167]
Question 1: C Question 2: B, Hope this Helps!
3 0
3 years ago
A loaded 375 kg toboggan is traveling on smooth horizontal snow at 4.50 m/s when it suddenly comes to a rough region. The region
zmey [24]

Answer:

a) The average friction force exerted on the toboggan is 653.125 newtons, b) The rough region reduced the kinetic energy of the toboggan in 92.889 %, c) The speed of the toboggan is reduced in 73.333 %.

Explanation:

a) Given the existence of non-conservative forces (friction between toboggan and ground), the motion must be modelled by means of the Principle of Energy Conservation and the Work-Energy Theorem, since toboggan decrease its speed (associated with  due to the action of friction. Changes in gravitational potential energy can be neglected due to the inclination of the ground. Then:

K_{1} = K_{2} + W_{f}

Where:

K_{1}, K_{2} are the initial and final translational kinetic energies of the tobbogan, measured in joules.

W_{f} - Dissipated work due to friction, measured in joules.

By applying definitions of translation kinetic energy and work, the expression described above is now expanded and simplified:

f\cdot \Delta s = \frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2})

Where:

f - Friction force, measured in newtons.

\Delta s - Distance travelled by the toboggan in the rough region, measured in meters.

m - Mass of the toboggan, measured in kilograms.

v_{1}, v_{2} - Initial and final speed of the toboggan, measured in meters per second.

The friction force is cleared:

f = \frac{m\cdot (v_{1}^{2}-v_{2}^{2})}{2\cdot \Delta s}

If m = 375\,kg, v_{1} = 4.50\,\frac{m}{s}, v_{2} = 1.20\,\frac{m}{s} and \Delta s = 5.40 \,m, then:

f = \frac{(375\,kg)\cdot \left[\left(4.50\,\frac{m}{s} \right)^{2}-\left(1.20\,\frac{m}{s}\right)^{2}\right]}{2\cdot (5.40\,m)}

f = 653.125\,N

The average friction force exerted on the toboggan is 653.125 newtons.

b) The percentage lost by the kinetic energy of the tobbogan due to friction is given by the following expression, which is expanded and simplified afterwards:

\% K_{loss} = \frac{K_{1}-K_{2}}{K_{1}}\times 100\,\%

\% K_{loss} = \left(1-\frac{K_{2}}{K_{1}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{\frac{1}{2}\cdot m \cdot v_{2}^{2}}{\frac{1}{2}\cdot m \cdot v_{1}^{2}} \right)\times 100\,\%

\% K_{loss} = \left(1-\frac{v_{2}^{2}}{v_{1}^{2}} \right)\times 100\,\%

\%K_{loss} = \left[1-\left(\frac{v_{2}}{v_{1}}\right)^{2} \right]\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\%K_{loss} = \left[1-\left(\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} }\right)^{2} \right]\times 100\,\%

\%K_{loss} = 92.889\,\%

The rough region reduced the kinetic energy of the toboggan in 92.889 %.

c) The percentage lost by the speed of the tobbogan due to friction is given by the following expression:

\% v_{loss} = \frac{v_{1}-v_{2}}{v_{1}}\times 100\,\%

\% v_{loss} = \left(1-\frac{v_{2}}{v_{1}} \right)\times 100\,\%

If v_{1} = 4.50\,\frac{m}{s} and v_{2} = 1.20\,\frac{m}{s}, then:

\% v_{loss} = \left(1-\frac{1.20\,\frac{m}{s} }{4.50\,\frac{m}{s} } \right)\times 100\,\%

\%v_{loss} = 73.333\,\%

The speed of the toboggan is reduced in 73.333 %.

5 0
3 years ago
The universal law of gravitation states that the force of attraction between two objects depends on which quantities?
Ronch [10]

Answer:

D. the masses of the objects and the distance between them

Explanation:

Gravitation is a force, a force doesn't care about the shape or density of objects, only about their masses... and distances.

And you can get it using the following equation:

f = \frac{Gm_{1}m_{2} }{d^{2} }

Where :

G is the universal gravitational constant : G = 6.6726 x 10-11N-m2/kg2

m represent the mass of each of the two objects

d is the distance between the centers of the objects.

4 0
3 years ago
If a photon has a frequency of 1.15 × 1015 hertz, what is the energy of the photon? Given: Planck's constant is 6.63 × 10-34 jou
Vika [28.1K]
<span>5.82 x 10-49 joules7.62 x 10-19 joules8.77 x 10-12 joules1.09 x 10-12<span> joules  </span><span>answer is b</span></span>
8 0
3 years ago
Read 2 more answers
What is the momentum of a 1, 500 kg car traveling at 3m/s?
ruslelena [56]
4,500 kgm/s bc 1,500x3
6 0
3 years ago
Read 2 more answers
Other questions:
  • Similarities and differences between high pitch and low pitch
    12·1 answer
  • Distinguish between concave mirror and convex mirror ​
    7·1 answer
  • A particle (q = 4.0 mC, m = 50 g) has a velocity of 25 m/s in the positive x direction when it first enters a region where the e
    10·1 answer
  • A tiger travels 3m/s^2 for 4.1s,what was its initial speed if it's final speed was 55k/h?
    15·1 answer
  • Which of these best explains why people on Earth cannot see the entire shape of the Milky Way
    8·1 answer
  • The gazelle travels 2 km in a half hour.The gazelle's average speed is:
    9·1 answer
  • #1 explain why there is no such thing as a quick and easy way to lose weight.
    8·1 answer
  • When the stomes are unloaded into water, the water level falls because the volume of the water displaced by stones in water will
    13·1 answer
  • What is the strength of the electric field between two parallel conducting plates separated by 1.00 cm and having a potential di
    8·1 answer
  • Consider the previous question. which has the greater acceleration: the bug or the windshield?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!