2.25 m/s² of acceleration is required to increase the speed of a car from 26 mi/h to 51 mi/h in 5 seconds.
To find the answer, we need to know about the acceleration.
<h3>What is acceleration?</h3>
- Acceleration is given as the ratio of velocity to time.
- Mathematically, acceleration= velocity/time.
<h3>What is the acceleration required to increase the speed of a car from 26 mi/h to 51 mi/h in 5 seconds?</h3>
- Here change in velocity of the car is 51-26= 25 mi/h.
- As 1 mi/h = 0.45 m/s. So 25mi/h = 11.25 m/s.
- Acceleration= (11.25m/s)/5s = 2.25 m/s².
Thus, we can conclude that the constant acceleration is 2.25 m/s².
Learn more about the acceleration here:
brainly.com/question/460763
#SPJ4
QUESTION:
WHAT IS THE MAGNITUDE OF THE MAGNETIC FIELD AT RIGHT ANGLES TO THE PROTON'S PATH?
ANSWER:
=<em><u>☑</u></em><em><u> </u></em><em><u>2</u></em><em><u>.</u></em><em><u>4</u></em><em><u> </u></em><em><u>T</u></em>
Answer:
65 m/s
Explanation:
v=v0+at <=> v = 11 + 12 t ∧ t = 4.5 s <=> v = 11 + 12×4.5 <=> v = 65 m/s
Atoms ere electrically neutral because they have equal number of protons and electrons. If an atom lose or gain one or more electrons it becomes an ion.
Answer:
L₀ = L_f , K_f < K₀
Explanation:
For this exercise we start as the angular momentum, with the friction force they are negligible and if we define the system as formed by the disk and the clay sphere, the forces during the collision are internal and therefore the angular momentum is conserved.
This means that the angular momentum before and after the collision changes.
Initial instant. Before the crash
L₀ = I₀ w₀
Final moment. Right after the crash
L_f = (I₀ + mr²) w
we treat the clay sphere as a point particle
how the angular momentum is conserved
L₀ = L_f
I₀ w₀ = (I₀ + mr²) w
w =
w₀
having the angular velocities we can calculate the kinetic energy
starting point. Before the crash
K₀ = ½ I₀ w₀²
final point. After the crash
K_f = ½ (I₀ + mr²) w²
sustitute
K_f = ½ (I₀ + mr²) (
w₀)²
Kf = ½
w₀²
we look for the relationship between the kinetic energy
= 

K_f < K₀
we see that the kinetic energy is not constant in the process, this implies that part of the energy is transformed into potential energy during the collision